{"title":"An Enhanced Snow Geese Optimizer Integrating Multiple Strategies for Numerical Optimization.","authors":"Baoqi Zhao, Yu Fang, Tianyi Chen","doi":"10.3390/biomimetics10060388","DOIUrl":null,"url":null,"abstract":"<p><p>An enhanced snow geese algorithm (ESGA) is proposed to address the problems of the weakened population diversity and unbalanced search tendencies encountered by the snow geese algorithm (SGA) in the search process. First, an adaptive switching strategy is used to dynamically select the search strategy to balance the exploitation and exploration capabilities. Second, a dominant group guidance strategy is introduced to improve the population quality. Finally, a dominant stochastic difference search strategy is designed to enrich the population diversity and help it escape from the local optimum by co-directing effects in multiple directions. Ablation experiments were performed on the CEC2017 test set to illustrate the improvement mechanism and the degree of compatibility of their improved strategies. The proposed ESGA with a highly cited algorithm and the powerful improved algorithm are compared on the CEC2022 test suite, and the experimental results confirm that the ESGA outperforms the compared algorithms. Finally, the ability of the ESGA to solve complex problems is further highlighted by solving the robot path planning problem.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190386/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10060388","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An enhanced snow geese algorithm (ESGA) is proposed to address the problems of the weakened population diversity and unbalanced search tendencies encountered by the snow geese algorithm (SGA) in the search process. First, an adaptive switching strategy is used to dynamically select the search strategy to balance the exploitation and exploration capabilities. Second, a dominant group guidance strategy is introduced to improve the population quality. Finally, a dominant stochastic difference search strategy is designed to enrich the population diversity and help it escape from the local optimum by co-directing effects in multiple directions. Ablation experiments were performed on the CEC2017 test set to illustrate the improvement mechanism and the degree of compatibility of their improved strategies. The proposed ESGA with a highly cited algorithm and the powerful improved algorithm are compared on the CEC2022 test suite, and the experimental results confirm that the ESGA outperforms the compared algorithms. Finally, the ability of the ESGA to solve complex problems is further highlighted by solving the robot path planning problem.