An Enhanced Snow Geese Optimizer Integrating Multiple Strategies for Numerical Optimization.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Baoqi Zhao, Yu Fang, Tianyi Chen
{"title":"An Enhanced Snow Geese Optimizer Integrating Multiple Strategies for Numerical Optimization.","authors":"Baoqi Zhao, Yu Fang, Tianyi Chen","doi":"10.3390/biomimetics10060388","DOIUrl":null,"url":null,"abstract":"<p><p>An enhanced snow geese algorithm (ESGA) is proposed to address the problems of the weakened population diversity and unbalanced search tendencies encountered by the snow geese algorithm (SGA) in the search process. First, an adaptive switching strategy is used to dynamically select the search strategy to balance the exploitation and exploration capabilities. Second, a dominant group guidance strategy is introduced to improve the population quality. Finally, a dominant stochastic difference search strategy is designed to enrich the population diversity and help it escape from the local optimum by co-directing effects in multiple directions. Ablation experiments were performed on the CEC2017 test set to illustrate the improvement mechanism and the degree of compatibility of their improved strategies. The proposed ESGA with a highly cited algorithm and the powerful improved algorithm are compared on the CEC2022 test suite, and the experimental results confirm that the ESGA outperforms the compared algorithms. Finally, the ability of the ESGA to solve complex problems is further highlighted by solving the robot path planning problem.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190386/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10060388","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

An enhanced snow geese algorithm (ESGA) is proposed to address the problems of the weakened population diversity and unbalanced search tendencies encountered by the snow geese algorithm (SGA) in the search process. First, an adaptive switching strategy is used to dynamically select the search strategy to balance the exploitation and exploration capabilities. Second, a dominant group guidance strategy is introduced to improve the population quality. Finally, a dominant stochastic difference search strategy is designed to enrich the population diversity and help it escape from the local optimum by co-directing effects in multiple directions. Ablation experiments were performed on the CEC2017 test set to illustrate the improvement mechanism and the degree of compatibility of their improved strategies. The proposed ESGA with a highly cited algorithm and the powerful improved algorithm are compared on the CEC2022 test suite, and the experimental results confirm that the ESGA outperforms the compared algorithms. Finally, the ability of the ESGA to solve complex problems is further highlighted by solving the robot path planning problem.

一种集成多种优化策略的增强型雪雁优化器。
针对雪雁算法在搜索过程中种群多样性减弱和搜索趋势不平衡的问题,提出了一种增强的雪雁算法(ESGA)。首先,采用自适应切换策略动态选择搜索策略,平衡挖掘和探索能力;其次,引入优势群体引导策略,提高群体素质。最后,设计了一种优势随机差分搜索策略,丰富种群多样性,并通过多方向的协同引导作用使其摆脱局部最优。在CEC2017测试集上进行烧蚀实验,以说明改进策略的改进机制和相容性。在CEC2022测试套件上比较了高被引算法和改进算法的ESGA,实验结果证实了ESGA优于比较算法。最后,通过求解机器人路径规划问题,进一步凸显了ESGA解决复杂问题的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信