Artificial intelligence in melanoma diagnosis: ethical considerations and clinical implementation.

Q3 Medicine
Baylor University Medical Center Proceedings Pub Date : 2025-05-05 eCollection Date: 2025-01-01 DOI:10.1080/08998280.2025.2489873
Kritin K Verma, Kurt M Grabow, Ryan S Koch, Daniel P Friedmann, Michelle B Tarbox
{"title":"Artificial intelligence in melanoma diagnosis: ethical considerations and clinical implementation.","authors":"Kritin K Verma, Kurt M Grabow, Ryan S Koch, Daniel P Friedmann, Michelle B Tarbox","doi":"10.1080/08998280.2025.2489873","DOIUrl":null,"url":null,"abstract":"<p><p>The use of artificial intelligence (AI) in dermatology, particularly for the diagnosis of melanoma, has demonstrated potential in improving early detection of cancer. Current AI-based systems, such as DermaSensor and Nevisense, have shown high sensitivity. In addition, open-source models like All Data Are Ext (ADAE) continue to show promise. Ethical, practical, and privacy concerns remain despite these advancements. Key challenges with these models include maintaining transparency with patients, ensuring privacy of patient data, and addressing discrepancies between AI and clinical determinations. Additional research, regulatory guidance, and open conversations are necessary to realize AI's full potential in the field of dermatology while preserving patient trust.</p>","PeriodicalId":8828,"journal":{"name":"Baylor University Medical Center Proceedings","volume":"38 4","pages":"577-578"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12184156/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Baylor University Medical Center Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/08998280.2025.2489873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

The use of artificial intelligence (AI) in dermatology, particularly for the diagnosis of melanoma, has demonstrated potential in improving early detection of cancer. Current AI-based systems, such as DermaSensor and Nevisense, have shown high sensitivity. In addition, open-source models like All Data Are Ext (ADAE) continue to show promise. Ethical, practical, and privacy concerns remain despite these advancements. Key challenges with these models include maintaining transparency with patients, ensuring privacy of patient data, and addressing discrepancies between AI and clinical determinations. Additional research, regulatory guidance, and open conversations are necessary to realize AI's full potential in the field of dermatology while preserving patient trust.

人工智能在黑色素瘤诊断中的应用:伦理考虑和临床应用。
人工智能(AI)在皮肤病学中的应用,特别是在黑色素瘤的诊断方面,已经证明了在改善癌症早期检测方面的潜力。目前基于人工智能的系统,如DermaSensor和Nevisense,已经显示出很高的灵敏度。此外,像所有数据都是Ext (ADAE)这样的开源模型继续显示出希望。尽管取得了这些进步,但道德、实践和隐私问题仍然存在。这些模型面临的主要挑战包括保持对患者的透明度,确保患者数据的隐私,以及解决人工智能与临床决定之间的差异。为了充分发挥人工智能在皮肤科领域的潜力,同时保持患者的信任,需要进一步的研究、监管指导和公开对话。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
245
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信