Borophene Via Intercalation Exfoliation.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Zhixuan Li, Gaurav Pandey, Arkamita Bandyopadhyay, Kamlendra Awasthi, John V Kennedy, Prashant Kumar, Ajayan Vinu
{"title":"Borophene Via Intercalation Exfoliation.","authors":"Zhixuan Li, Gaurav Pandey, Arkamita Bandyopadhyay, Kamlendra Awasthi, John V Kennedy, Prashant Kumar, Ajayan Vinu","doi":"10.1002/smtd.202500275","DOIUrl":null,"url":null,"abstract":"<p><p>Borophene, a highly anisotropic Dirac material, exhibits remarkable properties such as high electronic mobility, exceptional thermal conductivity, superconductivity, and ferroelasticity. It is ideal for energy storage, electrocatalysis, and wearable electronics applications. However, its synthesis is constrained by complexity, cost, and scalability issues. This study reports a scalable, single-step method for borophene synthesis via intercalation exfoliation using LiF, KF, and a LiF/KF combination in dimethylformamide (DMF), followed by sonication. Atomic force microscopy (AFM) reveals few-layer sheets with lateral dimensions of ≈200 nm to 2 µm, while high-resolution TEM shows crystallographic structures with Moiré patterns. Raman and X-ray photoelectron spectroscopy confirm the chemical phase purity and metallic nature of the β<sub>12</sub> and χ<sub>3</sub> phases with negligible oxygen contamination. Molecular dynamics simulations demonstrate reduced interlayer coupling through ion intercalation, facilitating efficient exfoliation. Borophene-integrated PVDF nanocomposites exhibit enhanced sensitivity in piezoelectric/triboelectric nanogenerators, achieving a maximum response voltage of ≈118 V. This novel synthesis strategy overcomes scalability challenges and unlocks new opportunities for borophene in advanced flexible electronics, energy harvesting, and sensing applications.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500275"},"PeriodicalIF":10.7000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500275","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Borophene, a highly anisotropic Dirac material, exhibits remarkable properties such as high electronic mobility, exceptional thermal conductivity, superconductivity, and ferroelasticity. It is ideal for energy storage, electrocatalysis, and wearable electronics applications. However, its synthesis is constrained by complexity, cost, and scalability issues. This study reports a scalable, single-step method for borophene synthesis via intercalation exfoliation using LiF, KF, and a LiF/KF combination in dimethylformamide (DMF), followed by sonication. Atomic force microscopy (AFM) reveals few-layer sheets with lateral dimensions of ≈200 nm to 2 µm, while high-resolution TEM shows crystallographic structures with Moiré patterns. Raman and X-ray photoelectron spectroscopy confirm the chemical phase purity and metallic nature of the β12 and χ3 phases with negligible oxygen contamination. Molecular dynamics simulations demonstrate reduced interlayer coupling through ion intercalation, facilitating efficient exfoliation. Borophene-integrated PVDF nanocomposites exhibit enhanced sensitivity in piezoelectric/triboelectric nanogenerators, achieving a maximum response voltage of ≈118 V. This novel synthesis strategy overcomes scalability challenges and unlocks new opportunities for borophene in advanced flexible electronics, energy harvesting, and sensing applications.

硼罗芬经插层剥落。
硼罗芬是一种高度各向异性的狄拉克材料,具有高电子迁移率、优异的导热性、超导性和铁弹性等特性。它是储能、电催化和可穿戴电子应用的理想选择。然而,它的合成受到复杂性、成本和可伸缩性问题的限制。本研究报告了一种可扩展的单步合成硼苯的方法,该方法通过在二甲基甲酰胺(DMF)中使用LiF、KF和LiF/KF组合进行插层剥离,然后进行超声。原子力显微镜(AFM)显示出横向尺寸约为200 nm至2 μ m的几层片状材料,而高分辨率透射电镜显示出具有莫尔条纹的晶体结构。拉曼和x射线光电子能谱证实了β12和χ3相的化学相纯度和金属性质,氧污染可以忽略。分子动力学模拟表明,通过离子插入减少层间耦合,促进有效的剥落。硼罗芬集成PVDF纳米复合材料在压电/摩擦电纳米发电机中表现出更高的灵敏度,最大响应电压约为118 V。这种新颖的合成策略克服了可扩展性的挑战,并为硼罗芬在先进柔性电子、能量收集和传感应用方面带来了新的机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信