Boosting Antibiotic Efficacy of Azole Drugs against Methicillin-Resistant Staphylococcus Aureus by Coordination to Rhenium Carbonyl Complexes.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
ChemBioChem Pub Date : 2025-06-25 DOI:10.1002/cbic.202500368
Kevin Schindler, Gozde Demirci, Bettina Tran, Sara Nasiri Sovari, Youri Cortat, Nicolas F Rosa De Sousa, Carola Velti, Baptiste Chapuis, Aurélien Crochet, Aleksandar Pavic, Jelena Djuris, Stefan Salentinig, Fabio Zobi
{"title":"Boosting Antibiotic Efficacy of Azole Drugs against Methicillin-Resistant Staphylococcus Aureus by Coordination to Rhenium Carbonyl Complexes.","authors":"Kevin Schindler, Gozde Demirci, Bettina Tran, Sara Nasiri Sovari, Youri Cortat, Nicolas F Rosa De Sousa, Carola Velti, Baptiste Chapuis, Aurélien Crochet, Aleksandar Pavic, Jelena Djuris, Stefan Salentinig, Fabio Zobi","doi":"10.1002/cbic.202500368","DOIUrl":null,"url":null,"abstract":"<p><p>Herein, a library of rhenium di- and tricarbonyl complexes featuring various antimicrobial azoles as monodentate ligands is synthesized and characterized. Their antimicrobial activity is evaluated against both methicillin-sensitive (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA), and selected compounds are also assessed for cytotoxicity, yielding promising therapeutic indices. Notably, the complexation of antifungal azoles to the rhenium core enhances antimicrobial efficacy, with a compound exhibiting up to a 32-fold improvement in minimum inhibitory concentration (MIC) values relative to the parent azole. Structure-activity relationships indicate that cationic fac-[Re(CO)<sub>3</sub>]<sup>+</sup> complexes consistently outperform their cis-[Re(CO)<sub>2</sub>]<sup>+</sup> counterparts, and mechanistic studies suggest that active complexes disrupt bacterial membrane integrity and interfere with the electron transport chain. Complementary small-angle X-ray scattering and in silico analysis corroborate these findings, offering insights into the mechanism of action of this family of complexes.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e2500368"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202500368","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, a library of rhenium di- and tricarbonyl complexes featuring various antimicrobial azoles as monodentate ligands is synthesized and characterized. Their antimicrobial activity is evaluated against both methicillin-sensitive (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA), and selected compounds are also assessed for cytotoxicity, yielding promising therapeutic indices. Notably, the complexation of antifungal azoles to the rhenium core enhances antimicrobial efficacy, with a compound exhibiting up to a 32-fold improvement in minimum inhibitory concentration (MIC) values relative to the parent azole. Structure-activity relationships indicate that cationic fac-[Re(CO)3]+ complexes consistently outperform their cis-[Re(CO)2]+ counterparts, and mechanistic studies suggest that active complexes disrupt bacterial membrane integrity and interfere with the electron transport chain. Complementary small-angle X-ray scattering and in silico analysis corroborate these findings, offering insights into the mechanism of action of this family of complexes.

通过配位铼羰基配合物提高唑类药物对耐甲氧西林金黄色葡萄球菌的抗菌效果。
在这项研究中,合成了一个以各种抗菌唑为单齿配体的铼二羰基和三羰基配合物库并对其进行了表征。对其抗甲氧西林敏感(MSSA)和耐甲氧西林(MRSA)金黄色葡萄球菌的抗菌活性进行了评估,并对选定的化合物进行了细胞毒性评估,得出了有希望的治疗指标。值得注意的是,抗真菌唑与铼核的络合增强了抗菌效果,与母体唑相比,该化合物的MIC值提高了32倍。构效关系表明,阳离子面-[Re(CO)3]+配合物的性能始终优于顺式-[Re(CO)2]+配合物,机制研究表明,活性配合物破坏细菌膜的完整性并干扰电子传递链。互补的小角度x射线散射和硅分析证实了这些发现,为该家族复合物的作用机制提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemBioChem
ChemBioChem 生物-生化与分子生物学
CiteScore
6.10
自引率
3.10%
发文量
407
审稿时长
1 months
期刊介绍: ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信