Advancing Soil Organic Carbon Prediction: A Comprehensive Review of Technologies, AI, Process-Based and Hybrid Modelling Approaches

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zijuan Ding, Ke Liu, Sabine Grunwald, Pete Smith, Philippe Ciais, Bin Wang, Alexandre M.J.-C. Wadoux, Carla Ferreira, Senani Karunaratne, Narasinha Shurpali, Xiaogang Yin, Dale Roberts, Oli Madgett, Sam Duncan, Meixue Zhou, Zhangyong Liu, Matthew Tom Harrison
{"title":"Advancing Soil Organic Carbon Prediction: A Comprehensive Review of Technologies, AI, Process-Based and Hybrid Modelling Approaches","authors":"Zijuan Ding,&nbsp;Ke Liu,&nbsp;Sabine Grunwald,&nbsp;Pete Smith,&nbsp;Philippe Ciais,&nbsp;Bin Wang,&nbsp;Alexandre M.J.-C. Wadoux,&nbsp;Carla Ferreira,&nbsp;Senani Karunaratne,&nbsp;Narasinha Shurpali,&nbsp;Xiaogang Yin,&nbsp;Dale Roberts,&nbsp;Oli Madgett,&nbsp;Sam Duncan,&nbsp;Meixue Zhou,&nbsp;Zhangyong Liu,&nbsp;Matthew Tom Harrison","doi":"10.1002/advs.202504152","DOIUrl":null,"url":null,"abstract":"<p>Measurement, monitoring, and prediction of soil organic carbon (SOC) are fundamental to supporting climate change mitigation efforts and promoting sustainable agricultural management practices. This review discusses recent advances in methodologies and technologies for SOC quantification, including remote sensing (RS), proximal soil sensing (PSS), artificial intelligence (AI) for SOC modelling (in particular, machine learning (ML) and deep learning (DL)), biogeochemical modelling, and data fusion. Integrating data from RS, PSS, and other sensors usually leads to good SOC predictions, provided it is supported by careful calibration, validation across diverse pedo-climatic and land management, and the use of data processing and modelling frameworks. We also found that the accuracy of AI-driven SOC prediction improves when RS covariates are included. Although DL often outperforms classical ML, there is no single best AI algorithm. By incorporating simulated outputs from biogeochemical model as additional training data for AI, causal relationships in SOC turnover can be incorporated into empirical modelling, while maintaining predictive accuracy. In conclusion, SOC prediction can be enhanced through 1) integrating sensing technologies, 2) applying AI, notably DL, 3) addressing biogeochemical model limitations (assumptions, parameterization, structure), 4) expanding SOC data availability, 5) improving mathematical representation of microbial influences on SOC, and 6) strengthening interdisciplinary cooperation between soil scientists and model developers.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 31","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202504152","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202504152","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Measurement, monitoring, and prediction of soil organic carbon (SOC) are fundamental to supporting climate change mitigation efforts and promoting sustainable agricultural management practices. This review discusses recent advances in methodologies and technologies for SOC quantification, including remote sensing (RS), proximal soil sensing (PSS), artificial intelligence (AI) for SOC modelling (in particular, machine learning (ML) and deep learning (DL)), biogeochemical modelling, and data fusion. Integrating data from RS, PSS, and other sensors usually leads to good SOC predictions, provided it is supported by careful calibration, validation across diverse pedo-climatic and land management, and the use of data processing and modelling frameworks. We also found that the accuracy of AI-driven SOC prediction improves when RS covariates are included. Although DL often outperforms classical ML, there is no single best AI algorithm. By incorporating simulated outputs from biogeochemical model as additional training data for AI, causal relationships in SOC turnover can be incorporated into empirical modelling, while maintaining predictive accuracy. In conclusion, SOC prediction can be enhanced through 1) integrating sensing technologies, 2) applying AI, notably DL, 3) addressing biogeochemical model limitations (assumptions, parameterization, structure), 4) expanding SOC data availability, 5) improving mathematical representation of microbial influences on SOC, and 6) strengthening interdisciplinary cooperation between soil scientists and model developers.

Abstract Image

Abstract Image

Abstract Image

推进土壤有机碳预测:技术、人工智能、基于过程和混合建模方法的综合综述。
土壤有机碳(SOC)的测量、监测和预测是支持减缓气候变化努力和促进可持续农业管理做法的基础。本文综述了土壤有机碳量化方法和技术的最新进展,包括遥感(RS)、近端土壤遥感(PSS)、土壤有机碳建模的人工智能(AI)(特别是机器学习(ML)和深度学习(DL))、生物地球化学建模和数据融合。整合来自RS、PSS和其他传感器的数据通常会导致良好的有机碳预测,前提是要有仔细的校准、不同土壤气候和土地管理的验证以及数据处理和建模框架的使用支持。我们还发现,当包含RS协变量时,人工智能驱动的SOC预测的准确性得到了提高。虽然深度学习通常优于经典的机器学习,但没有一个最好的人工智能算法。通过将生物地球化学模型的模拟输出作为人工智能的额外训练数据,可以将SOC周转的因果关系纳入经验模型,同时保持预测的准确性。综上所述,土壤有机碳预测可以通过以下几个方面来增强:1)集成传感技术;2)应用人工智能,尤其是深度学习;3)解决生物地球化学模型的局限性(假设、参数化、结构);4)扩大土壤有机碳数据的可用性;5)改进微生物对土壤有机碳影响的数学表示;6)加强土壤科学家和模型开发者之间的跨学科合作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信