Spyros V. Kallivokas, Anthony Chazirakis, Rohit Ghanta, Anastassia Rissanou, Patrycja Polińska, Craig Burkhart, Manolis Doxastakis and Vagelis Harmandaris
{"title":"Elastic, viscoelastic, dynamic, topological and structural properties of crosslinked SBR through atomistic molecular dynamics simulations†","authors":"Spyros V. Kallivokas, Anthony Chazirakis, Rohit Ghanta, Anastassia Rissanou, Patrycja Polińska, Craig Burkhart, Manolis Doxastakis and Vagelis Harmandaris","doi":"10.1039/D5SM00126A","DOIUrl":null,"url":null,"abstract":"<p >In this research work, we provide a detailed investigation of the structural and viscoelastic properties of crosslinked styrene butadiene rubber (SBR) networks that are studied using atomistic molecular dynamics simulations. The composition of the system ratio is (styrene/<em>trans</em>/vinyl/<em>cis</em>): (15/33/26/26) by weight and a 4-atom sulfur chain was used as a hardener for the crosslinking process. The main goal of our work is to characterize a fully percolated SBR network, with a crosslinking density of 8%, at the molecular level, structurally, mechanically and topologically and compare its properties with a system with a lower crosslinking density (3%) and the non crosslinked SBR melt. SBR crosslinked systems are generated <em>via</em> a recently proposed crosslinking algorithm. The shear stress relaxation modulus and the mean square displacement (MSD) were calculated for all systems along with structural properties, such as the pair distribution function, angles and dihedral distributions, and statistical distributions of the atoms between the crosslinks, and finally the topology of these networks was investigated according to the number of clusters that are created during the different crosslink densities, the molecular weight fraction of the largest cluster in these networks, and finally the percolation threshold. The results indicate that the higher we crosslink the SBR, the stiffer our final rubber becomes according to the results of the dynamics and rheology. We further probe the dependence of the structural and viscoelastic properties of the SBS rubber on crosslinking density by comparing a fully percolated system with one having lower crosslinking density (3%) and the non crosslinked SBR melt.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" 28","pages":" 5743-5751"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/sm/d5sm00126a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this research work, we provide a detailed investigation of the structural and viscoelastic properties of crosslinked styrene butadiene rubber (SBR) networks that are studied using atomistic molecular dynamics simulations. The composition of the system ratio is (styrene/trans/vinyl/cis): (15/33/26/26) by weight and a 4-atom sulfur chain was used as a hardener for the crosslinking process. The main goal of our work is to characterize a fully percolated SBR network, with a crosslinking density of 8%, at the molecular level, structurally, mechanically and topologically and compare its properties with a system with a lower crosslinking density (3%) and the non crosslinked SBR melt. SBR crosslinked systems are generated via a recently proposed crosslinking algorithm. The shear stress relaxation modulus and the mean square displacement (MSD) were calculated for all systems along with structural properties, such as the pair distribution function, angles and dihedral distributions, and statistical distributions of the atoms between the crosslinks, and finally the topology of these networks was investigated according to the number of clusters that are created during the different crosslink densities, the molecular weight fraction of the largest cluster in these networks, and finally the percolation threshold. The results indicate that the higher we crosslink the SBR, the stiffer our final rubber becomes according to the results of the dynamics and rheology. We further probe the dependence of the structural and viscoelastic properties of the SBS rubber on crosslinking density by comparing a fully percolated system with one having lower crosslinking density (3%) and the non crosslinked SBR melt.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.