{"title":"New Application of Histological Staining for Visualization of Endogenous Proteins in Fossil Material.","authors":"Hayato Inaba, Kentaro Chiba, Mototaka Saneyoshi, Takaaki Miyaji, Asako Kawakami, Noriyuki Nagaoka, Yasushi Takechi, Kiyofumi Takabatake, Kirstin S Brink, Miu Tanaka, Masaki Eda, Yoshitsugu Kobayashi, Hidetsugu Tsujigiwa","doi":"10.1021/acs.jproteome.5c00078","DOIUrl":null,"url":null,"abstract":"<p><p>Biochemical applications are increasingly utilized in paleontological studies, especially for detecting ancient proteins in fossil samples. Histopathological staining techniques have been applied, but they have yet to specifically target type I collagen, the primary bone matrix protein and the most significant protein of interest in paleoproteomic research. Moreover, these staining methods are often applied to demineralized fossils, which remove the original microstructure of the bone matrix and increase the risk of contamination. To address these limitations, this study aimed to test the effectiveness of special staining methods for detecting collagen using Pleistocene-aged fossil specimens. Trials on demineralized and nondemineralized modern bone samples, as well as nondemineralized fossil samples, demonstrated Van Gieson's staining method as the most suitable for visualizing collagen distribution in hard tissue matrices. Colorimetric analysis, electrophoresis, and subsequent mass spectrometry of extracts further confirmed the endogenous nature of the collagen in the fossil samples. Future studies may benefit from employing Van Gieson's staining on nondemineralized bone samples to detect collagen in fossils, advancing our understanding of ancient protein preservation.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":"3356-3366"},"PeriodicalIF":3.6000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.5c00078","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Biochemical applications are increasingly utilized in paleontological studies, especially for detecting ancient proteins in fossil samples. Histopathological staining techniques have been applied, but they have yet to specifically target type I collagen, the primary bone matrix protein and the most significant protein of interest in paleoproteomic research. Moreover, these staining methods are often applied to demineralized fossils, which remove the original microstructure of the bone matrix and increase the risk of contamination. To address these limitations, this study aimed to test the effectiveness of special staining methods for detecting collagen using Pleistocene-aged fossil specimens. Trials on demineralized and nondemineralized modern bone samples, as well as nondemineralized fossil samples, demonstrated Van Gieson's staining method as the most suitable for visualizing collagen distribution in hard tissue matrices. Colorimetric analysis, electrophoresis, and subsequent mass spectrometry of extracts further confirmed the endogenous nature of the collagen in the fossil samples. Future studies may benefit from employing Van Gieson's staining on nondemineralized bone samples to detect collagen in fossils, advancing our understanding of ancient protein preservation.
期刊介绍:
Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".