IR-Induced CO Photodesorption from Pure CO Ice and CO on Amorphous Solid Water.

IF 2.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ACS Earth and Space Chemistry Pub Date : 2025-05-22 eCollection Date: 2025-06-19 DOI:10.1021/acsearthspacechem.5c00040
Laura Slumstrup, John D Thrower, Johanna G M Schrauwen, Thanja Lamberts, Emily R Ingman, Domantas Laurinavicius, Jessalyn DeVine, Jeroen Terwisscha van Scheltinga, Julia C Santos, Jennifer A Noble, Gabi Wenzel, Martin R S McCoustra, Wendy A Brown, Harold Linnartz, Liv Hornekær, Herma M Cuppen, Britta Redlich, Sergio Ioppolo
{"title":"IR-Induced CO Photodesorption from Pure CO Ice and CO on Amorphous Solid Water.","authors":"Laura Slumstrup, John D Thrower, Johanna G M Schrauwen, Thanja Lamberts, Emily R Ingman, Domantas Laurinavicius, Jessalyn DeVine, Jeroen Terwisscha van Scheltinga, Julia C Santos, Jennifer A Noble, Gabi Wenzel, Martin R S McCoustra, Wendy A Brown, Harold Linnartz, Liv Hornekær, Herma M Cuppen, Britta Redlich, Sergio Ioppolo","doi":"10.1021/acsearthspacechem.5c00040","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon monoxide (CO) is a key component of the icy mantles that form on the surfaces of dust grains in the interstellar medium. In dense molecular clouds, where grain temperatures are around 10 K, CO freezes out as a nonpolar layer on top of H<sub>2</sub>O ice. This CO plays an important role in the formation of complex organic molecules (COMs) through reactions with hydrogen atoms. Interstellar grains are also exposed to photons and charged particles that can both drive chemical reactions and promote desorption of molecules, providing an important link between the solid state reservoir of molecules and the gas phase. While several studies have considered UV photon driven desorption mechanisms, the UV component of the interstellar radiation field is strongly attenuated within dense clouds, with the internal cloud field being dominated by IR photons. We have used the FELIX IR Free Electron Laser (FEL) FEL-2 to irradiate a few monolayer film of CO deposited on the top of amorphous solid water (ASW) and compared the CO desorption yields to those obtained for a pure CO film. Infrared spectroscopy, combined with mass spectrometric detection of desorbing CO molecules, reveals that excitation of vibrational modes in the underlying ASW leads to significant CO desorption. This is in contrast to direct excitation of the stretching mode of CO which results in only inefficient desorption. The desorption efficiencies we derive indicate that energy transfer within ices on interstellar grains might provide an important route to IR photon-induced desorption of volatile species, such as CO.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"9 6","pages":"1607-1621"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12184678/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Earth and Space Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsearthspacechem.5c00040","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/19 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon monoxide (CO) is a key component of the icy mantles that form on the surfaces of dust grains in the interstellar medium. In dense molecular clouds, where grain temperatures are around 10 K, CO freezes out as a nonpolar layer on top of H2O ice. This CO plays an important role in the formation of complex organic molecules (COMs) through reactions with hydrogen atoms. Interstellar grains are also exposed to photons and charged particles that can both drive chemical reactions and promote desorption of molecules, providing an important link between the solid state reservoir of molecules and the gas phase. While several studies have considered UV photon driven desorption mechanisms, the UV component of the interstellar radiation field is strongly attenuated within dense clouds, with the internal cloud field being dominated by IR photons. We have used the FELIX IR Free Electron Laser (FEL) FEL-2 to irradiate a few monolayer film of CO deposited on the top of amorphous solid water (ASW) and compared the CO desorption yields to those obtained for a pure CO film. Infrared spectroscopy, combined with mass spectrometric detection of desorbing CO molecules, reveals that excitation of vibrational modes in the underlying ASW leads to significant CO desorption. This is in contrast to direct excitation of the stretching mode of CO which results in only inefficient desorption. The desorption efficiencies we derive indicate that energy transfer within ices on interstellar grains might provide an important route to IR photon-induced desorption of volatile species, such as CO.

红外诱导CO在非晶固体水中的光解吸。
一氧化碳(CO)是星际介质中尘埃颗粒表面形成的冰幔的关键成分。在致密的分子云中,颗粒温度约为10 K, CO在水冰上以非极性层的形式冻结。这种CO通过与氢原子的反应在复杂有机分子(COMs)的形成中起着重要作用。星际颗粒也暴露在光子和带电粒子中,这些光子和带电粒子既可以驱动化学反应,又可以促进分子的解吸,为分子的固态储存库和气相之间提供了重要的联系。虽然有几项研究考虑了紫外光子驱动的解吸机制,但星际辐射场的紫外成分在致密云中被强烈衰减,而内部云场主要由红外光子主导。利用FELIX红外自由电子激光器(FEL) FEL-2对沉积在非晶固体水(ASW)表面的CO单层膜进行了照射,并与纯CO膜的CO解吸率进行了比较。红外光谱结合质谱检测解吸CO分子,揭示了底层ASW中振动模式的激发导致了显著的CO解吸。这与CO的直接激发拉伸模式相反,后者只导致低效率的脱附。我们得出的解吸效率表明,星际颗粒上冰内的能量转移可能为红外光子诱导挥发性物质(如CO)的解吸提供了一条重要途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Earth and Space Chemistry
ACS Earth and Space Chemistry Earth and Planetary Sciences-Geochemistry and Petrology
CiteScore
5.30
自引率
11.80%
发文量
249
期刊介绍: The scope of ACS Earth and Space Chemistry includes the application of analytical, experimental and theoretical chemistry to investigate research questions relevant to the Earth and Space. The journal encompasses the highly interdisciplinary nature of research in this area, while emphasizing chemistry and chemical research tools as the unifying theme. The journal publishes broadly in the domains of high- and low-temperature geochemistry, atmospheric chemistry, marine chemistry, planetary chemistry, astrochemistry, and analytical geochemistry. ACS Earth and Space Chemistry publishes Articles, Letters, Reviews, and Features to provide flexible formats to readily communicate all aspects of research in these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信