MBMRF: A modified bidirectional IPv6 multicast protocol with mixed upward and downward forwarding for TSCH-enabled WSANs

IF 3.5 2区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Eden Teshome Hunde , Shereen Ismail
{"title":"MBMRF: A modified bidirectional IPv6 multicast protocol with mixed upward and downward forwarding for TSCH-enabled WSANs","authors":"Eden Teshome Hunde ,&nbsp;Shereen Ismail","doi":"10.1016/j.simpat.2025.103172","DOIUrl":null,"url":null,"abstract":"<div><div>Wireless Sensor and Actuator Networks (WSANs) consist of numerous embedded devices that collaborate to perform complex tasks, surpassing the capabilities of traditional wired networks. This collaboration is efficiently enabled through multicast protocols. While multicast protocols offer significant advantages for WSANs, many fail to meet certain performance requirements. To address these challenges, we propose the Modified Bidirectional Multicast RPL Forwarding (MBMRF) protocol.</div><div>This study tackles limitations in existing Internet Protocol version 6 (IPv6) multicast protocols, including the Routing Protocol for Low Power and Lossy Networks (RPL) and Bidirectional Multicast RPL Forwarding (BMRF). The proposed MBMRF protocol introduces a novel mixed upward and downward multicast packet forwarding mechanism optimized for multi-channel Time Slotted Channel Hopping (TSCH) networks. Furthermore, to ensure sufficient timeslot allocation for scheduling mixed up-and-down packet transmissions, the protocol incorporates a modified version of the Orchestra scheduling algorithm.</div><div>The proposed MBMRF protocol was implemented and simulated on Zolertia (Z1) motes using the Contiki operating system and evaluated against existing IPv6 multicast protocols, including Stateless Multicast RPL Forwarding (SMRF), Enhanced Stateless Multicast RPL Forwarding (ESMRF), and BMRF. Results show that MBMRF significantly reduces buffer overflow and network-wide energy consumption compared to SMRF, ESMRF, and BMRF, with only a marginal increase in memory usage.</div></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"144 ","pages":"Article 103172"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X25001078","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Wireless Sensor and Actuator Networks (WSANs) consist of numerous embedded devices that collaborate to perform complex tasks, surpassing the capabilities of traditional wired networks. This collaboration is efficiently enabled through multicast protocols. While multicast protocols offer significant advantages for WSANs, many fail to meet certain performance requirements. To address these challenges, we propose the Modified Bidirectional Multicast RPL Forwarding (MBMRF) protocol.
This study tackles limitations in existing Internet Protocol version 6 (IPv6) multicast protocols, including the Routing Protocol for Low Power and Lossy Networks (RPL) and Bidirectional Multicast RPL Forwarding (BMRF). The proposed MBMRF protocol introduces a novel mixed upward and downward multicast packet forwarding mechanism optimized for multi-channel Time Slotted Channel Hopping (TSCH) networks. Furthermore, to ensure sufficient timeslot allocation for scheduling mixed up-and-down packet transmissions, the protocol incorporates a modified version of the Orchestra scheduling algorithm.
The proposed MBMRF protocol was implemented and simulated on Zolertia (Z1) motes using the Contiki operating system and evaluated against existing IPv6 multicast protocols, including Stateless Multicast RPL Forwarding (SMRF), Enhanced Stateless Multicast RPL Forwarding (ESMRF), and BMRF. Results show that MBMRF significantly reduces buffer overflow and network-wide energy consumption compared to SMRF, ESMRF, and BMRF, with only a marginal increase in memory usage.
MBMRF:一种改进的双向IPv6组播协议,用于使能tsch的wwsans,具有混合向上和向下转发
无线传感器和执行器网络(wsan)由许多嵌入式设备组成,这些设备协作执行复杂任务,超越了传统有线网络的能力。这种协作通过多播协议有效地实现。虽然多播协议为无线局域网提供了显著的优势,但许多协议无法满足某些性能要求。为了解决这些挑战,我们提出了改进的双向多播RPL转发(MBMRF)协议。本研究解决了现有互联网协议版本6 (IPv6)多播协议的局限性,包括低功耗和有损网络路由协议(RPL)和双向多播RPL转发(BMRF)。提出的MBMRF协议引入了一种针对多通道时隙跳频(TSCH)网络进行优化的新型混合向上和向下多播分组转发机制。此外,为了确保有足够的时隙分配用于调度混合上下包传输,该协议包含了Orchestra调度算法的修改版本。提出的MBMRF协议在Zolertia (Z1)上使用Contiki操作系统进行了实现和仿真,并与现有的IPv6组播协议进行了比较,包括无状态组播RPL转发(SMRF)、增强无状态组播RPL转发(ESMRF)和BMRF。结果表明,与SMRF、ESMRF和BMRF相比,MBMRF显著减少了缓冲区溢出和网络范围的能量消耗,而内存使用仅略有增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Simulation Modelling Practice and Theory
Simulation Modelling Practice and Theory 工程技术-计算机:跨学科应用
CiteScore
9.80
自引率
4.80%
发文量
142
审稿时长
21 days
期刊介绍: The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling. The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas. Paper submission is solicited on: • theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.; • methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.; • simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.; • distributed and real-time simulation, simulation interoperability; • tools for high performance computing simulation, including dedicated architectures and parallel computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信