Impacts of Atmospheric Near-Surface Stability on the Arctic Summer Air-Sea Heat Budget Using Uncrewed Surface Vehicles

IF 3.3 2区 地球科学 Q1 OCEANOGRAPHY
Yanxu Chen, Lisan Yu, Chidong Zhang
{"title":"Impacts of Atmospheric Near-Surface Stability on the Arctic Summer Air-Sea Heat Budget Using Uncrewed Surface Vehicles","authors":"Yanxu Chen,&nbsp;Lisan Yu,&nbsp;Chidong Zhang","doi":"10.1029/2024JC022313","DOIUrl":null,"url":null,"abstract":"<p>The atmospheric marine boundary layer (AMBL) plays a crucial role in regulating air-sea interactions and influencing the climate system, particularly in the Arctic due to its high sensitivity to global warming. This study utilizes five years (2018–2022) of saildrone data from the Bering-Chukchi-Beaufort Seas to analyze atmospheric near-surface stability and air-sea turbulent heat fluxes during the Arctic summer. By applying Monin-Obukhov similarity theory, we investigate the temporal variability and mechanisms that influence AMBL stability. Our findings reveal two distinct regimes of stable and unstable conditions in two contrasting years of 2020 and 2022. In 2020, cold air advection driven by northerly winds consistently destabilizes the AMBL, leading to increased oceanic heat loss. In 2022, however, southerly winds and warm air advection stabilize the AMBL, suppressing air-sea heat exchanges. The temporal variation of turbulent heat fluxes is primarily driven by air-sea temperature differences, with the magnitude of wind speed and its temperature covariance serving as secondary factors. We also show the importance of skin temperature measurements from saildrones for improving estimates of turbulent heat fluxes. These insights enhance our understanding of Arctic air-sea interactions and inform climate models, underscoring the need for high-resolution observations in polar regions and the improvement of bulk flux parameterization for stable AMBL.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"130 7","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JC022313","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

The atmospheric marine boundary layer (AMBL) plays a crucial role in regulating air-sea interactions and influencing the climate system, particularly in the Arctic due to its high sensitivity to global warming. This study utilizes five years (2018–2022) of saildrone data from the Bering-Chukchi-Beaufort Seas to analyze atmospheric near-surface stability and air-sea turbulent heat fluxes during the Arctic summer. By applying Monin-Obukhov similarity theory, we investigate the temporal variability and mechanisms that influence AMBL stability. Our findings reveal two distinct regimes of stable and unstable conditions in two contrasting years of 2020 and 2022. In 2020, cold air advection driven by northerly winds consistently destabilizes the AMBL, leading to increased oceanic heat loss. In 2022, however, southerly winds and warm air advection stabilize the AMBL, suppressing air-sea heat exchanges. The temporal variation of turbulent heat fluxes is primarily driven by air-sea temperature differences, with the magnitude of wind speed and its temperature covariance serving as secondary factors. We also show the importance of skin temperature measurements from saildrones for improving estimates of turbulent heat fluxes. These insights enhance our understanding of Arctic air-sea interactions and inform climate models, underscoring the need for high-resolution observations in polar regions and the improvement of bulk flux parameterization for stable AMBL.

大气近地表稳定性对北极夏季海气热收支的影响
大气海洋边界层(AMBL)由于对全球变暖的高度敏感性,在调节海气相互作用和影响气候系统方面发挥着至关重要的作用,特别是在北极。本研究利用白令-楚科奇-波弗特海5年(2018-2022年)的航行无人机数据,分析了北极夏季大气近地表稳定性和海气湍流热通量。运用Monin-Obukhov相似理论,研究了影响AMBL稳定性的时间变异性和机制。我们的研究结果显示,在2020年和2022年这两个截然不同的年份,稳定和不稳定的条件是两种截然不同的制度。2020年,由北风驱动的冷空气平流持续破坏AMBL的稳定,导致海洋热量损失增加。然而,在2022年,南风和暖空气平流稳定了AMBL,抑制了海气热交换。湍流热通量的时间变化主要受海气温差驱动,风速大小及其温度协方差是次要因素。我们还展示了从风帆上测量皮肤温度对改进湍流热通量估计的重要性。这些见解增强了我们对北极海气相互作用的理解,并为气候模式提供了信息,强调了在极地地区进行高分辨率观测和改进总体通量参数化以实现稳定的AMBL的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research-Oceans
Journal of Geophysical Research-Oceans Earth and Planetary Sciences-Oceanography
CiteScore
7.00
自引率
13.90%
发文量
429
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信