{"title":"Graph Neural Network Aided Detection for the Multi-User Multi-Dimensional Index Modulated Uplink","authors":"Xinyu Feng;Mohammed El-Hajjar;Chao Xu;Lajos Hanzo","doi":"10.1109/OJVT.2025.3574934","DOIUrl":null,"url":null,"abstract":"The concept of Compressed Sensing-aided Space-Frequency Index Modulation (CS-SFIM) is conceived for the Large-Scale Multi-User Multiple-Input Multiple-Output Uplink (LS-MU-MIMO-UL) of Next-Generation (NG) networks. Explicitly, in CS-SFIM, the information bits are mapped to both spatial- and frequency-domain indices, where we treat the activation patterns of the transmit antennas and of the subcarriers separately. Serving a large number of users in an MU-MIMO-UL system leads to substantial Multi-User Interference (MUI). Hence, we design the Space-Frequency (SF) domain matrix as a joint factor graph, where the Approximate Message Passing (AMP) and Expectation Propagation (EP) based MU detectors can be utilized. In the LS-MU-MIMO-UL scenario considered, the proposed system uses optimal Maximum Likelihood (ML) and Minimum Mean Square Error (MMSE) detectors as benchmarks for comparison with the proposed MP-based detectors. These MP-based detectors significantly reduce the detection complexity compared to ML detection, making the design eminently suitable for LS-MU scenarios. To further reduce the detection complexity and improve the detection performance, we propose a pair of Graph Neural Network (GNN) based detectors, which rely on the orthogonal AMP (OAMP) and on the EP algorithm, which we refer to as the GNN-AMP and GEPNet detectors, respectively. The GEPNet detector maximizes the detection performance, while the GNN-AMP detector strikes a performance versus complexity trade-off. The GNN is trained for a single system configuration and yet it can be used for any number of users in the system. The simulation results show that the GNN-based detector approaches the ML performance in various configurations.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"1593-1612"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11017516","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11017516/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The concept of Compressed Sensing-aided Space-Frequency Index Modulation (CS-SFIM) is conceived for the Large-Scale Multi-User Multiple-Input Multiple-Output Uplink (LS-MU-MIMO-UL) of Next-Generation (NG) networks. Explicitly, in CS-SFIM, the information bits are mapped to both spatial- and frequency-domain indices, where we treat the activation patterns of the transmit antennas and of the subcarriers separately. Serving a large number of users in an MU-MIMO-UL system leads to substantial Multi-User Interference (MUI). Hence, we design the Space-Frequency (SF) domain matrix as a joint factor graph, where the Approximate Message Passing (AMP) and Expectation Propagation (EP) based MU detectors can be utilized. In the LS-MU-MIMO-UL scenario considered, the proposed system uses optimal Maximum Likelihood (ML) and Minimum Mean Square Error (MMSE) detectors as benchmarks for comparison with the proposed MP-based detectors. These MP-based detectors significantly reduce the detection complexity compared to ML detection, making the design eminently suitable for LS-MU scenarios. To further reduce the detection complexity and improve the detection performance, we propose a pair of Graph Neural Network (GNN) based detectors, which rely on the orthogonal AMP (OAMP) and on the EP algorithm, which we refer to as the GNN-AMP and GEPNet detectors, respectively. The GEPNet detector maximizes the detection performance, while the GNN-AMP detector strikes a performance versus complexity trade-off. The GNN is trained for a single system configuration and yet it can be used for any number of users in the system. The simulation results show that the GNN-based detector approaches the ML performance in various configurations.