VarWrist: An Anthropomorphic Soft Wrist With Variable Stiffness

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Chaozhou Zhang;Min Li;Zhanshuo Yang;Xiangrui Kong;Jiayi Luo;Yushen Liu;Jian Fu;Guanghua Xu;Shan Luo
{"title":"VarWrist: An Anthropomorphic Soft Wrist With Variable Stiffness","authors":"Chaozhou Zhang;Min Li;Zhanshuo Yang;Xiangrui Kong;Jiayi Luo;Yushen Liu;Jian Fu;Guanghua Xu;Shan Luo","doi":"10.1109/LRA.2025.3579629","DOIUrl":null,"url":null,"abstract":"Robotic wrists play a crucial role in enhancing the dexterity and stability of robotic end-effectors. Existing rigid robotic wrists tend to be complex and lack flexibility, while soft robotic wrists often struggle with limited load-bearing capacity and lower accuracy. Human wrists feature multi-degrees of freedom and variable stiffness, which help human hands to accomplish daily tasks. This study presents an innovative anthropomorphic soft robotic wrist, VarWrist, equipped with a fiber jamming variable stiffness module, enabling stiffness adjustment through vacuuming. VarWrist consists of three parallel bellows, utilizing a positive-negative pneumatic actuation strategy to mimic human wrist motion. In addition, the trajectory equation of the rotation center was fitted through modeling. We developed a prototype of VarWrist and assessed its performance. Results indicate that the soft wrist surpasses the motion range of human wrists, achieving flexion (81.9°), extension (78.5°), ulnar deviation (70.5°), and radial deviation (70.5°). The bending motion trajectory showed a 73% increase in similarity to human motion compared to fixed-axis rotation, with VarWrist exhibiting a significant range of variable stiffness (resting state: 206%, working state: 155%). Demonstration experiments confirm that this wrist facilitates a dexterous hand in completing grasping tasks that would be unattainable by the hand alone.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 8","pages":"7883-7890"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11034760/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Robotic wrists play a crucial role in enhancing the dexterity and stability of robotic end-effectors. Existing rigid robotic wrists tend to be complex and lack flexibility, while soft robotic wrists often struggle with limited load-bearing capacity and lower accuracy. Human wrists feature multi-degrees of freedom and variable stiffness, which help human hands to accomplish daily tasks. This study presents an innovative anthropomorphic soft robotic wrist, VarWrist, equipped with a fiber jamming variable stiffness module, enabling stiffness adjustment through vacuuming. VarWrist consists of three parallel bellows, utilizing a positive-negative pneumatic actuation strategy to mimic human wrist motion. In addition, the trajectory equation of the rotation center was fitted through modeling. We developed a prototype of VarWrist and assessed its performance. Results indicate that the soft wrist surpasses the motion range of human wrists, achieving flexion (81.9°), extension (78.5°), ulnar deviation (70.5°), and radial deviation (70.5°). The bending motion trajectory showed a 73% increase in similarity to human motion compared to fixed-axis rotation, with VarWrist exhibiting a significant range of variable stiffness (resting state: 206%, working state: 155%). Demonstration experiments confirm that this wrist facilitates a dexterous hand in completing grasping tasks that would be unattainable by the hand alone.
可变刚度的拟人化软手腕
机器人手腕在提高机器人末端执行器的灵活性和稳定性方面起着至关重要的作用。现有的刚性机器人手腕结构复杂,缺乏柔韧性,而柔性机器人手腕的承载能力有限,精度较低。人的手腕具有多自由度和可变刚度,帮助人的手完成日常任务。本研究提出了一种创新的拟人化柔性机器人手腕——VarWrist,它配备了光纤干扰变刚度模块,可以通过真空调节刚度。VarWrist由三个平行的风箱组成,利用正负气动驱动策略来模拟人类手腕的运动。此外,通过建模,拟合了旋转中心的轨迹方程。我们开发了VarWrist的原型并评估了它的性能。结果表明,软腕超过了人类手腕的活动范围,实现了屈曲(81.9°)、伸展(78.5°)、尺侧偏移(70.5°)和桡侧偏移(70.5°)。与固定轴旋转相比,弯曲运动轨迹与人类运动的相似性增加了73%,VarWrist显示出显著的可变刚度范围(静息状态:206%,工作状态:155%)。演示实验证实,这只手腕有助于灵巧的手完成单手无法完成的抓取任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信