Machine Learning Enhanced Single Crystal Fiber Fabrication via Laser Heated Pedestal Growth

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Xibao Gao;Sichao Wang;Bo Liu;Xiao Liu;Shuai Qu;Chen Guan;Qinglan Wang
{"title":"Machine Learning Enhanced Single Crystal Fiber Fabrication via Laser Heated Pedestal Growth","authors":"Xibao Gao;Sichao Wang;Bo Liu;Xiao Liu;Shuai Qu;Chen Guan;Qinglan Wang","doi":"10.1109/LPT.2025.3580586","DOIUrl":null,"url":null,"abstract":"This study introduces a machine learning (ML)-assisted framework for optimizing Proportional-Integral-Derivative (PID) coefficients, enabling stable, long-length single crystal fiber (SCF) fabrication via the Laser Heated Pedestal Growth (LHPG) technique. Compared with traditional curve-fitting methods, the proposed ML approach significantly enhances computational efficiency and achieves up to 20dB improvement in prediction accuracy, leading to notable improvements in SCF uniformity and achievable fiber length. The fabricated sapphire SCF demonstrates a length exceeding 3 m and an average diameter of <inline-formula> <tex-math>$150~\\mu $ </tex-math></inline-formula>m with fluctuations below <inline-formula> <tex-math>$\\pm 3~\\mu $ </tex-math></inline-formula>m, validating the effectiveness of the ML model. Additionally, fundamental guidelines for optimizing PID coefficients in LHPG systems are provided. These results offer valuable insights for high-quality SCF fabrication and are expected to facilitate the production of improved fibers suitable for harsh environment sensing applications.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"37 18","pages":"1017-1020"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11037741/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a machine learning (ML)-assisted framework for optimizing Proportional-Integral-Derivative (PID) coefficients, enabling stable, long-length single crystal fiber (SCF) fabrication via the Laser Heated Pedestal Growth (LHPG) technique. Compared with traditional curve-fitting methods, the proposed ML approach significantly enhances computational efficiency and achieves up to 20dB improvement in prediction accuracy, leading to notable improvements in SCF uniformity and achievable fiber length. The fabricated sapphire SCF demonstrates a length exceeding 3 m and an average diameter of $150~\mu $ m with fluctuations below $\pm 3~\mu $ m, validating the effectiveness of the ML model. Additionally, fundamental guidelines for optimizing PID coefficients in LHPG systems are provided. These results offer valuable insights for high-quality SCF fabrication and are expected to facilitate the production of improved fibers suitable for harsh environment sensing applications.
机器学习增强单晶光纤在激光加热基座生长中的制备
本研究介绍了一种机器学习(ML)辅助框架,用于优化比例-积分-导数(PID)系数,通过激光加热基座生长(LHPG)技术实现稳定的长长度单晶光纤(SCF)制造。与传统的曲线拟合方法相比,本文提出的ML方法显著提高了计算效率,预测精度提高了20dB,从而显著改善了SCF均匀性和可实现的光纤长度。制备的蓝宝石SCF长度超过3 m,平均直径为$150~\mu $ m,波动小于$ $ pm 3~\mu $ m,验证了ML模型的有效性。此外,还提供了优化LHPG系统中PID系数的基本准则。这些结果为高质量的SCF制造提供了有价值的见解,并有望促进适用于恶劣环境传感应用的改进纤维的生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Photonics Technology Letters
IEEE Photonics Technology Letters 工程技术-工程:电子与电气
CiteScore
5.00
自引率
3.80%
发文量
404
审稿时长
2.0 months
期刊介绍: IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信