An Overview of Neural Rendering Accelerators: Challenges, Trends, and Future Directions

IF 3.8 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Junha Ryu;Hoi-Jun Yoo
{"title":"An Overview of Neural Rendering Accelerators: Challenges, Trends, and Future Directions","authors":"Junha Ryu;Hoi-Jun Yoo","doi":"10.1109/JETCAS.2025.3561777","DOIUrl":null,"url":null,"abstract":"Rapid advancements in neural rendering have revolutionized the fields of augmented reality (AR) and virtual reality (VR) by enabling photorealistic 3D modeling and rendering. However, deploying neural rendering on edge devices presents significant challenges due to computational complexity, memory inefficiencies, and energy constraints. This paper provides a comprehensive overview of neural rendering accelerators, identifying the major hardware inefficiencies across sampling, positional encoding, and multi-layer perception (MLP) stages. We explore hardware-software co-optimization techniques that address these challenges and provide a summary for in-depth analysis. Additionally, emerging trends like 3D Gaussian Splatting (3DGS) and hybrid rendering approaches are briefly introduced, highlighting their potential to improve rendering quality and efficiency. By presenting a unified analysis of challenges, solutions, and future directions, this work aims to guide the development of next-generation neural rendering accelerators, especially for resource-constrained environments.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"15 2","pages":"299-311"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10967345","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10967345/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid advancements in neural rendering have revolutionized the fields of augmented reality (AR) and virtual reality (VR) by enabling photorealistic 3D modeling and rendering. However, deploying neural rendering on edge devices presents significant challenges due to computational complexity, memory inefficiencies, and energy constraints. This paper provides a comprehensive overview of neural rendering accelerators, identifying the major hardware inefficiencies across sampling, positional encoding, and multi-layer perception (MLP) stages. We explore hardware-software co-optimization techniques that address these challenges and provide a summary for in-depth analysis. Additionally, emerging trends like 3D Gaussian Splatting (3DGS) and hybrid rendering approaches are briefly introduced, highlighting their potential to improve rendering quality and efficiency. By presenting a unified analysis of challenges, solutions, and future directions, this work aims to guide the development of next-generation neural rendering accelerators, especially for resource-constrained environments.
神经渲染加速器概述:挑战、趋势和未来方向
神经渲染的快速发展通过实现逼真的3D建模和渲染,彻底改变了增强现实(AR)和虚拟现实(VR)领域。然而,由于计算复杂性、内存效率低下和能量限制,在边缘设备上部署神经渲染存在重大挑战。本文提供了神经渲染加速器的全面概述,确定了采样,位置编码和多层感知(MLP)阶段的主要硬件效率低下。我们将探讨解决这些挑战的软硬件协同优化技术,并为深入分析提供总结。此外,还简要介绍了3D高斯喷溅(3DGS)和混合渲染方法等新兴趋势,强调了它们提高渲染质量和效率的潜力。通过对挑战、解决方案和未来方向的统一分析,本工作旨在指导下一代神经渲染加速器的开发,特别是在资源受限的环境中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.50
自引率
2.20%
发文量
86
期刊介绍: The IEEE Journal on Emerging and Selected Topics in Circuits and Systems is published quarterly and solicits, with particular emphasis on emerging areas, special issues on topics that cover the entire scope of the IEEE Circuits and Systems (CAS) Society, namely the theory, analysis, design, tools, and implementation of circuits and systems, spanning their theoretical foundations, applications, and architectures for signal and information processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信