Nanostructured zinc stannate perovskite films synthesized via molten salt modified-solvothermal method for enhanced piezoelectric properties

Christopher Munoz , Alyssah Fuentes , Cristian Alaniz , Tarik Dickens , Mohammed Jasim Uddin
{"title":"Nanostructured zinc stannate perovskite films synthesized via molten salt modified-solvothermal method for enhanced piezoelectric properties","authors":"Christopher Munoz ,&nbsp;Alyssah Fuentes ,&nbsp;Cristian Alaniz ,&nbsp;Tarik Dickens ,&nbsp;Mohammed Jasim Uddin","doi":"10.1016/j.nwnano.2025.100120","DOIUrl":null,"url":null,"abstract":"<div><div>Three dimensional (3D) piezoelectric zinc stannate (ZnSnO<sub>3</sub>) nanoweb arrays are synthesized using a molten salt modified solvothermal method and deposited in PDMS films for electrochemical analysis of its piezoelectric response. This work is a preliminary assessment of comparative piezoelectric efficacy influenced by changes in synthesis, effecting dimension and particle size. Advantages of hydrothermal, molten salt, and solvothermal synthesis methods were leveraged to facilitate several chemical and surface engineering techniques to enhance piezoelectric properties by increasing the surface area of zinc stannate nanoparticles. The combination of these treatments reduce the size of zinc stannate to approximately ∼40nm-80nm weblike networks. Scanning electron microscopy (SEM) and X-Ray Diffraction (XRD) analysis reveal a mesoporous protonated tristannate (H<sub>2</sub>Sn<sub>3</sub>O<sub>7</sub>) nanoweb template with connecting wirelike strands having diameters ranging from 12-27nm across and pores up to 50nm in diameter. Subsequent solvothermal treatment produces the perovskite nanoweb in a mixed solvent solution of critical dielectric conditions found to be 80% ethanol and 20% water for maximum Zn<sup>2+</sup> deposition. ZnSnO<sub>3</sub> nanowebs (NW) were deposited in PDMS thin films and used as a piezoelectric nanogenerator (PENG) to characterize its electrochemical properties. Comparative voltage analysis of PDMS films made with weight percentages of (0%, 1%, 5%, 10%, 15% and 20%) zinc stannate sub-microcubes and nanowebs morphologies were done using an oscilloscope. These tests reveal an increased voltage output for the zinc stannate nanoweb morphology. The combination of these synthesis methods forming 3D zinc stannate nanoweb arrays could have far-reaching implications in producing other metal oxides when approaching the design of perovskite nanomaterials and piezoelectric energy harvesting systems in the coming decade.</div></div>","PeriodicalId":100942,"journal":{"name":"Nano Trends","volume":"11 ","pages":"Article 100120"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666978125000492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Three dimensional (3D) piezoelectric zinc stannate (ZnSnO3) nanoweb arrays are synthesized using a molten salt modified solvothermal method and deposited in PDMS films for electrochemical analysis of its piezoelectric response. This work is a preliminary assessment of comparative piezoelectric efficacy influenced by changes in synthesis, effecting dimension and particle size. Advantages of hydrothermal, molten salt, and solvothermal synthesis methods were leveraged to facilitate several chemical and surface engineering techniques to enhance piezoelectric properties by increasing the surface area of zinc stannate nanoparticles. The combination of these treatments reduce the size of zinc stannate to approximately ∼40nm-80nm weblike networks. Scanning electron microscopy (SEM) and X-Ray Diffraction (XRD) analysis reveal a mesoporous protonated tristannate (H2Sn3O7) nanoweb template with connecting wirelike strands having diameters ranging from 12-27nm across and pores up to 50nm in diameter. Subsequent solvothermal treatment produces the perovskite nanoweb in a mixed solvent solution of critical dielectric conditions found to be 80% ethanol and 20% water for maximum Zn2+ deposition. ZnSnO3 nanowebs (NW) were deposited in PDMS thin films and used as a piezoelectric nanogenerator (PENG) to characterize its electrochemical properties. Comparative voltage analysis of PDMS films made with weight percentages of (0%, 1%, 5%, 10%, 15% and 20%) zinc stannate sub-microcubes and nanowebs morphologies were done using an oscilloscope. These tests reveal an increased voltage output for the zinc stannate nanoweb morphology. The combination of these synthesis methods forming 3D zinc stannate nanoweb arrays could have far-reaching implications in producing other metal oxides when approaching the design of perovskite nanomaterials and piezoelectric energy harvesting systems in the coming decade.
采用熔盐改性溶剂热法合成纳米锡酸锌钙钛矿薄膜以增强压电性能
采用熔盐改性溶剂热法合成了三维压电锡酸锌(ZnSnO3)纳米网阵列,并将其沉积在PDMS薄膜上,对其压电响应进行了电化学分析。本工作是对合成、影响尺寸和粒径变化对比较压电效应影响的初步评估。利用水热、熔盐和溶剂热合成方法的优势,促进了几种化学和表面工程技术,通过增加锡酸锌纳米颗粒的表面积来提高压电性能。这些处理的组合将锡酸锌的尺寸减小到约40nm-80nm的网状网络。扫描电子显微镜(SEM)和x射线衍射(XRD)分析显示了一种介孔质子化三锡酸酯(H2Sn3O7)纳米网模板,其连接的线状链直径为12-27nm,孔直径为50nm。随后的溶剂热处理在混合溶剂溶液中产生钙钛矿纳米网,该混合溶剂溶液的临界介电条件为80%乙醇和20%水,以获得最大的Zn2+沉积。将ZnSnO3纳米网(NW)沉积在PDMS薄膜上,并将其用作压电纳米发电机(PENG)来表征其电化学性能。用示波器对重量百分比分别为(0%、1%、5%、10%、15%和20%)锡酸锌亚微立方体和纳米网形态的PDMS薄膜进行了电压对比分析。这些测试揭示了锡酸锌纳米网形态的电压输出增加。这些合成方法的结合形成三维锡酸锌纳米网阵列,在未来十年钙钛矿纳米材料和压电能量收集系统的设计中,对生产其他金属氧化物具有深远的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信