Waqas Amin , Qi Huang , Jian Li , Abdullah Aman Khan , Umashankar Subramaniam , Sivakumar Selvam
{"title":"A secure energy management model for Peer-to-Peer smart grids with user-centric constraints","authors":"Waqas Amin , Qi Huang , Jian Li , Abdullah Aman Khan , Umashankar Subramaniam , Sivakumar Selvam","doi":"10.1016/j.iot.2025.101678","DOIUrl":null,"url":null,"abstract":"<div><div>In today’s smart grid era, ensuring fair energy distribution while protecting participants’ data privacy is a critical challenge, particularly in Peer-to-Peer (P2P) energy trading environments. To address this challenge, this paper presents a privacy-preserving energy management model that ensures fair energy allocation based on participants’ reported information. By identifying the demand-to-supply ratio, the proposed model classifies the market operation mode either buyers’ mode or sellers’ mode and manages energy accordingly. The model employs a quorum-based architecture that integrates SHA-256 encryption and Shamir’s Secret Sharing scheme to safeguard participants’ private data against potential cyber-attacks such as Man-in-the-Middle (MitM) and False Data Injection Attacks (FDIA). Simulation results demonstrate that once the system operator receives the valid threshold shares, the original information can be successfully reconstructed. Furthermore, the simulation also indicates that the proposed model not only improves grid stress by up to 76.60% during peak hours but also transforms the grid’s role from an energy taker to an energy contributor.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"33 ","pages":"Article 101678"},"PeriodicalIF":6.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525001921","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In today’s smart grid era, ensuring fair energy distribution while protecting participants’ data privacy is a critical challenge, particularly in Peer-to-Peer (P2P) energy trading environments. To address this challenge, this paper presents a privacy-preserving energy management model that ensures fair energy allocation based on participants’ reported information. By identifying the demand-to-supply ratio, the proposed model classifies the market operation mode either buyers’ mode or sellers’ mode and manages energy accordingly. The model employs a quorum-based architecture that integrates SHA-256 encryption and Shamir’s Secret Sharing scheme to safeguard participants’ private data against potential cyber-attacks such as Man-in-the-Middle (MitM) and False Data Injection Attacks (FDIA). Simulation results demonstrate that once the system operator receives the valid threshold shares, the original information can be successfully reconstructed. Furthermore, the simulation also indicates that the proposed model not only improves grid stress by up to 76.60% during peak hours but also transforms the grid’s role from an energy taker to an energy contributor.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.