Changhui Gao , Songyu Liu , Guangyin Du , Mei Bai , Yankai Wu , Runmin Hao
{"title":"Seepage pressure distribution of gas jet flow in loess","authors":"Changhui Gao , Songyu Liu , Guangyin Du , Mei Bai , Yankai Wu , Runmin Hao","doi":"10.1016/j.sandf.2025.101648","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to investigate the permeation mechanisms and pressure distribution of gas jets in collapsible loess during pneumatic-vibratory probe compaction (PVPC). Indoor model tests were performed to analyze the behavior of continuous gas jet injection, and a seepage pressure distribution model was developed to characterize gas flow in unsaturated loess. The results show that pulsating gas jets disrupt the soil structure near the nozzle, enabling gas penetration driven by internal pressure differentials and leading to the gradual formation of continuous fractures. Gas pressure measurements at the opposite end of the soil layer indicate an initial pressure rise that stabilizes over time, with thinner soil layers showing more pronounced responses. The proposed model effectively captures the dynamic behavior of gas flow, illustrating a rapid decline in seepage pressure over time and a slow increase in seepage distance. These findings enhance the understanding of gas jet permeation and provide practical guidance for optimizing PVPC parameters, further advancing its application in loess foundation improvement within geotechnical engineering.</div></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"65 4","pages":"Article 101648"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Foundations","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038080625000824","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to investigate the permeation mechanisms and pressure distribution of gas jets in collapsible loess during pneumatic-vibratory probe compaction (PVPC). Indoor model tests were performed to analyze the behavior of continuous gas jet injection, and a seepage pressure distribution model was developed to characterize gas flow in unsaturated loess. The results show that pulsating gas jets disrupt the soil structure near the nozzle, enabling gas penetration driven by internal pressure differentials and leading to the gradual formation of continuous fractures. Gas pressure measurements at the opposite end of the soil layer indicate an initial pressure rise that stabilizes over time, with thinner soil layers showing more pronounced responses. The proposed model effectively captures the dynamic behavior of gas flow, illustrating a rapid decline in seepage pressure over time and a slow increase in seepage distance. These findings enhance the understanding of gas jet permeation and provide practical guidance for optimizing PVPC parameters, further advancing its application in loess foundation improvement within geotechnical engineering.
期刊介绍:
Soils and Foundations is one of the leading journals in the field of soil mechanics and geotechnical engineering. It is the official journal of the Japanese Geotechnical Society (JGS)., The journal publishes a variety of original research paper, technical reports, technical notes, as well as the state-of-the-art reports upon invitation by the Editor, in the fields of soil and rock mechanics, geotechnical engineering, and environmental geotechnics. Since the publication of Volume 1, No.1 issue in June 1960, Soils and Foundations will celebrate the 60th anniversary in the year of 2020.
Soils and Foundations welcomes theoretical as well as practical work associated with the aforementioned field(s). Case studies that describe the original and interdisciplinary work applicable to geotechnical engineering are particularly encouraged. Discussions to each of the published articles are also welcomed in order to provide an avenue in which opinions of peers may be fed back or exchanged. In providing latest expertise on a specific topic, one issue out of six per year on average was allocated to include selected papers from the International Symposia which were held in Japan as well as overseas.