{"title":"Gluon mass scale through the Schwinger mechanism","authors":"M.N. Ferreira , J. Papavassiliou","doi":"10.1016/j.ppnp.2025.104186","DOIUrl":null,"url":null,"abstract":"<div><div>It has long been argued that the action of the Schwinger mechanism in the gauge sector of Quantum Chromodynamics leads to the generation of a gluon mass scale. Within this scenario, the analytic structure of the fundamental vertices is modified by the creation of scalar colored excitations with vanishing mass. In the limit of zero momentum transfer, these terms act as massless poles, providing the required conditions for the infrared stabilization of the gluon propagator, and producing a characteristic displacement to the associated Ward identities. In this article we offer an extensive overview of the salient notions and techniques underlying this dynamical picture. We place particular emphasis on recent developments related to the exact renormalization of the mass, the nonlinear nature of the pole equation, and the key role played by the Fredholm alternative theorem.</div></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"144 ","pages":"Article 104186"},"PeriodicalIF":17.9000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Particle and Nuclear Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014664102500033X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
It has long been argued that the action of the Schwinger mechanism in the gauge sector of Quantum Chromodynamics leads to the generation of a gluon mass scale. Within this scenario, the analytic structure of the fundamental vertices is modified by the creation of scalar colored excitations with vanishing mass. In the limit of zero momentum transfer, these terms act as massless poles, providing the required conditions for the infrared stabilization of the gluon propagator, and producing a characteristic displacement to the associated Ward identities. In this article we offer an extensive overview of the salient notions and techniques underlying this dynamical picture. We place particular emphasis on recent developments related to the exact renormalization of the mass, the nonlinear nature of the pole equation, and the key role played by the Fredholm alternative theorem.
期刊介绍:
Taking the format of four issues per year, the journal Progress in Particle and Nuclear Physics aims to discuss new developments in the field at a level suitable for the general nuclear and particle physicist and, in greater technical depth, to explore the most important advances in these areas. Most of the articles will be in one of the fields of nuclear physics, hadron physics, heavy ion physics, particle physics, as well as astrophysics and cosmology. A particular effort is made to treat topics of an interface type for which both particle and nuclear physics are important. Related topics such as detector physics, accelerator physics or the application of nuclear physics in the medical and archaeological fields will also be treated from time to time.