Yongchao Wang , Tian Zheng , Maged Iskandar , Marion Leibold , Jinoh Lee
{"title":"Practical and robust incremental model predictive control for flexible-joint robots","authors":"Yongchao Wang , Tian Zheng , Maged Iskandar , Marion Leibold , Jinoh Lee","doi":"10.1016/j.mechatronics.2025.103364","DOIUrl":null,"url":null,"abstract":"<div><div>This article proposes an optimization-based method for robust yet efficient control of flexible-joint robots by using the model predictive control approach. The time-delay estimation (TDE) technique is used to approximate uncertain and nonlinear dynamic equations, where neither concrete knowledge of mathematical system model parameters is required in the approximation, thus granting the model-free property for dynamics compensation and real-time system linearization. TDE is integrated with model predictive control, which is designated as the incremental model predictive control (IMPC) framework. This approach guarantees the tracking performance of the flexible joint robot with input and output constraints, such as motor torque and joint states. Moreover, the proposed controller can practically circumvent high-order derivatives in implementation while providing robust tracking, a capability that conventional methods for flexible joint robots often face challenges due to the inherent nature of their high-order dynamics. The input-to-state stability of IMPC in a local region around the reachable reference trajectory is theoretically proven, and the high approximation accuracy of the resulting incremental system is analyzed. Finally, a series of experiments is conducted on a flexible-joint robot to verify the practical effectiveness of IMPC, and superior performance in terms of high accuracy, high computational efficiency, and constraint admissibility is demonstrated.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"110 ","pages":"Article 103364"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095741582500073X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This article proposes an optimization-based method for robust yet efficient control of flexible-joint robots by using the model predictive control approach. The time-delay estimation (TDE) technique is used to approximate uncertain and nonlinear dynamic equations, where neither concrete knowledge of mathematical system model parameters is required in the approximation, thus granting the model-free property for dynamics compensation and real-time system linearization. TDE is integrated with model predictive control, which is designated as the incremental model predictive control (IMPC) framework. This approach guarantees the tracking performance of the flexible joint robot with input and output constraints, such as motor torque and joint states. Moreover, the proposed controller can practically circumvent high-order derivatives in implementation while providing robust tracking, a capability that conventional methods for flexible joint robots often face challenges due to the inherent nature of their high-order dynamics. The input-to-state stability of IMPC in a local region around the reachable reference trajectory is theoretically proven, and the high approximation accuracy of the resulting incremental system is analyzed. Finally, a series of experiments is conducted on a flexible-joint robot to verify the practical effectiveness of IMPC, and superior performance in terms of high accuracy, high computational efficiency, and constraint admissibility is demonstrated.
期刊介绍:
Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.