Qi Shang , Jun Tan , Hao Lv , Quan Dong , Yi Lin , Guozhi Wu , Aitao Tang , Bin Jiang , Jürgen Eckert
{"title":"Breaking the trade-off between thermal conductivity and strength of magnesium alloys: Mechanisms and strategies","authors":"Qi Shang , Jun Tan , Hao Lv , Quan Dong , Yi Lin , Guozhi Wu , Aitao Tang , Bin Jiang , Jürgen Eckert","doi":"10.1016/j.cossms.2025.101230","DOIUrl":null,"url":null,"abstract":"<div><div>Mg-based structural materials, known for their lightweight properties and excellent thermal conductivity, have significant potential in applications requiring efficient heat dissipation, especially in the information age. However, a trade-off exists between the mechanical properties and thermal conductivity of these materials. Strengthening techniques such as solution strengthening, dislocation strengthening, grain boundary strengthening, and second-phase strengthening can improve mechanical properties but typically degrade thermal conductivity. This trade-off presents a major challenge in the development of Mg-based materials that simultaneously offer high mechanical strength and thermal conductivity. This review explores the mechanisms and strategies for enhancing the thermal conductivity of Mg-based structural materials, including tailoring alloying elements, depleting matrix solutes, designing composite structure, tailoring texture, and regulating the morphology of the second phase. This will provide insights into the future development of Mg materials.</div></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"37 ","pages":"Article 101230"},"PeriodicalIF":12.2000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028625000178","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Mg-based structural materials, known for their lightweight properties and excellent thermal conductivity, have significant potential in applications requiring efficient heat dissipation, especially in the information age. However, a trade-off exists between the mechanical properties and thermal conductivity of these materials. Strengthening techniques such as solution strengthening, dislocation strengthening, grain boundary strengthening, and second-phase strengthening can improve mechanical properties but typically degrade thermal conductivity. This trade-off presents a major challenge in the development of Mg-based materials that simultaneously offer high mechanical strength and thermal conductivity. This review explores the mechanisms and strategies for enhancing the thermal conductivity of Mg-based structural materials, including tailoring alloying elements, depleting matrix solutes, designing composite structure, tailoring texture, and regulating the morphology of the second phase. This will provide insights into the future development of Mg materials.
期刊介绍:
Title: Current Opinion in Solid State & Materials Science
Journal Overview:
Aims to provide a snapshot of the latest research and advances in materials science
Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science
Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields
Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research
Promotes cross-fertilization of ideas across an increasingly interdisciplinary field