Dynamics and interactions of bound-state Solitons for a coupled Hirota system with negative coherent coupling

IF 2.5 3区 物理与天体物理 Q2 ACOUSTICS
Xue-Hui Zhao , Guo-Hong Yang , Zhong-Zhou Lan
{"title":"Dynamics and interactions of bound-state Solitons for a coupled Hirota system with negative coherent coupling","authors":"Xue-Hui Zhao ,&nbsp;Guo-Hong Yang ,&nbsp;Zhong-Zhou Lan","doi":"10.1016/j.wavemoti.2025.103592","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, We investigate the dynamics and interactions of bound-state solitons in a coupled Hirota system with negative coherent coupling. Using the <span><math><mi>N</mi></math></span>th-order binary Darboux transformation, we derive <span><math><mi>N</mi></math></span>-soliton solutions and analyze four distinct cases of bound-state soliton dynamics through spectral parameter constraints. Our results demonstrate how the higher-order perturbation parameter <span><math><mi>ɛ</mi></math></span> modulates nonlinear coupling, governing transitions between fusion, fission, and mixed interaction states. These findings provide new insights into soliton manipulation in nonlinear optical media and complex coupled systems, with potential applications in optical communications and signal processing.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"139 ","pages":"Article 103592"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212525001039","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, We investigate the dynamics and interactions of bound-state solitons in a coupled Hirota system with negative coherent coupling. Using the Nth-order binary Darboux transformation, we derive N-soliton solutions and analyze four distinct cases of bound-state soliton dynamics through spectral parameter constraints. Our results demonstrate how the higher-order perturbation parameter ɛ modulates nonlinear coupling, governing transitions between fusion, fission, and mixed interaction states. These findings provide new insights into soliton manipulation in nonlinear optical media and complex coupled systems, with potential applications in optical communications and signal processing.
负相干耦合Hirota系统束缚态孤子的动力学与相互作用
本文研究了具有负相干耦合的Hirota系统中束缚态孤子的动力学和相互作用。利用n阶二元达布变换,导出了n孤子解,并通过谱参数约束分析了四种不同的束缚态孤子动力学。我们的结果证明了高阶扰动参数如何调节非线性耦合,控制聚变、裂变和混合相互作用状态之间的转换。这些发现为非线性光介质和复杂耦合系统中的孤子操纵提供了新的见解,在光通信和信号处理方面具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信