{"title":"Attribute based spatial segmentation for optimising POI placement","authors":"M. de Klerk, I. Fabris-Rotelli","doi":"10.1016/j.spasta.2025.100911","DOIUrl":null,"url":null,"abstract":"<div><div>Effective spatial planning and resource optimisation require precise demarcation of potential spatial accessible areas and optimal placement of points of interest (POIs). Our approach introduces a novel attribute based spatial segmentation methodology that utilises an iterative clustering approach to create unique macro-regions, each associated with key structural and attribute specific properties. By integrating a probabilistic attribute based structure with k-means clustering, we adaptively segment spatial regions to balance area based attributes and topological characteristics. The full geographical network is segmented into attribute based macro-regions for all spatially accessible and spatially disjoint regions. Attribute based spatial segmentation offers insights into why certain areas may be spatially disjoint and if it is identified as potential spatially accessible areas to determine which POIs can be placed to maximise accessibility. This approach transforms city planning and resource allocation by aligning POI placement with regional needs and characteristics.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"68 ","pages":"Article 100911"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675325000338","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Effective spatial planning and resource optimisation require precise demarcation of potential spatial accessible areas and optimal placement of points of interest (POIs). Our approach introduces a novel attribute based spatial segmentation methodology that utilises an iterative clustering approach to create unique macro-regions, each associated with key structural and attribute specific properties. By integrating a probabilistic attribute based structure with k-means clustering, we adaptively segment spatial regions to balance area based attributes and topological characteristics. The full geographical network is segmented into attribute based macro-regions for all spatially accessible and spatially disjoint regions. Attribute based spatial segmentation offers insights into why certain areas may be spatially disjoint and if it is identified as potential spatially accessible areas to determine which POIs can be placed to maximise accessibility. This approach transforms city planning and resource allocation by aligning POI placement with regional needs and characteristics.
期刊介绍:
Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication.
Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.