Decentralized energy-efficient microgrid control Using Graph neural networks and LSTM-based Event-Triggered control

IF 3.8 3区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Xiaoqian Meng, Yajie Zhao, Sijia Zheng, Zi Ye, Heping Wang
{"title":"Decentralized energy-efficient microgrid control Using Graph neural networks and LSTM-based Event-Triggered control","authors":"Xiaoqian Meng,&nbsp;Yajie Zhao,&nbsp;Sijia Zheng,&nbsp;Zi Ye,&nbsp;Heping Wang","doi":"10.1016/j.suscom.2025.101154","DOIUrl":null,"url":null,"abstract":"<div><div>As microgrid systems become more complex and interconnected, traditional control strategies face significant challenges in terms of scalability, efficiency, and responsiveness. Existing models, often relying on time-triggered approaches, result in excessive communication, energy waste, and slower system responses. The main purpose of this work is to formulate a decentralized control architecture that communicates better, regulates voltage and frequency, and stabilizes the microgrids. To address these limitations, this research introduces an innovative decentralized control framework that combines Graph Neural Networks (GNNs) and Long Short-Term Memory (LSTM) networks, integrated with Event-Triggered Control to optimize microgrid operations. This methodology applies GNNs to capture the spatial dependencies among microgrid components like generators, storage, and loads. Meanwhile, the LSTMs identify the temporal dynamics associated with variations in load and generation. System control actions are then triggered only when necessary, hence reducing communication overhead considerably. The results demonstrates 55 % less communication load was reported, voltage regulation accuracy increased by 45 %, and other efficiency measures for frequency regulation improved by 35 %. Along with these, other performance metrics indicate a 30 % improvement of the Voltage Stability Index (VSI) going from 0.47 to 0.33 and lowering the Frequency Regulation Error (FRE) by 20 % from 4.5 % to 3.6 %. All of which consolidated the evidence of the efficiency of the approach suggested to control microgrid operations in a real-time adaptive energy-efficient manner. These findings highlight the powerful combination of GNNs and LSTMs for achieving adaptive, energy-efficient, and real-time control in decentralized microgrid systems.</div></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"47 ","pages":"Article 101154"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537925000757","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

As microgrid systems become more complex and interconnected, traditional control strategies face significant challenges in terms of scalability, efficiency, and responsiveness. Existing models, often relying on time-triggered approaches, result in excessive communication, energy waste, and slower system responses. The main purpose of this work is to formulate a decentralized control architecture that communicates better, regulates voltage and frequency, and stabilizes the microgrids. To address these limitations, this research introduces an innovative decentralized control framework that combines Graph Neural Networks (GNNs) and Long Short-Term Memory (LSTM) networks, integrated with Event-Triggered Control to optimize microgrid operations. This methodology applies GNNs to capture the spatial dependencies among microgrid components like generators, storage, and loads. Meanwhile, the LSTMs identify the temporal dynamics associated with variations in load and generation. System control actions are then triggered only when necessary, hence reducing communication overhead considerably. The results demonstrates 55 % less communication load was reported, voltage regulation accuracy increased by 45 %, and other efficiency measures for frequency regulation improved by 35 %. Along with these, other performance metrics indicate a 30 % improvement of the Voltage Stability Index (VSI) going from 0.47 to 0.33 and lowering the Frequency Regulation Error (FRE) by 20 % from 4.5 % to 3.6 %. All of which consolidated the evidence of the efficiency of the approach suggested to control microgrid operations in a real-time adaptive energy-efficient manner. These findings highlight the powerful combination of GNNs and LSTMs for achieving adaptive, energy-efficient, and real-time control in decentralized microgrid systems.
基于图神经网络和lstm的分散节能微电网控制
随着微电网系统变得越来越复杂和互联,传统的控制策略在可扩展性、效率和响应性方面面临着重大挑战。现有的模型通常依赖于时间触发的方法,导致过度的通信、能源浪费和较慢的系统响应。本工作的主要目的是制定一个分散的控制架构,以更好地通信,调节电压和频率,并稳定微电网。为了解决这些限制,本研究引入了一种创新的分散控制框架,该框架结合了图神经网络(gnn)和长短期记忆(LSTM)网络,并与事件触发控制相结合,以优化微电网的运行。该方法应用gnn来捕获微电网组件(如发电机、存储和负载)之间的空间依赖关系。同时,lstm识别与负荷和发电量变化相关的时间动态。系统控制动作只在必要时触发,因此大大减少了通信开销。结果表明,通信负荷降低了55% %,电压调节精度提高了45% %,频率调节的其他效率措施提高了35% %。与此同时,其他性能指标表明,电压稳定指数(VSI)从0.47提高到0.33,提高了30 %,频率调节误差(FRE)从4.5 %降低到3.6 %,降低了20 %。所有这些都进一步证明了以实时自适应节能方式控制微电网运行的方法的有效性。这些发现强调了gnn和lstm的强大组合,可以在分散的微电网系统中实现自适应、节能和实时控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Computing-Informatics & Systems
Sustainable Computing-Informatics & Systems COMPUTER SCIENCE, HARDWARE & ARCHITECTUREC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
10.70
自引率
4.40%
发文量
142
期刊介绍: Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信