Extreme-fast-charging of energy-dense lithium metal batteries enabled by controlled grafting of ionic polymers

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Joule Pub Date : 2025-06-25 DOI:10.1016/j.joule.2025.102004
Peng Wen, Huaijiao Wang, Shantao Han, Weiping Li, Louis Alexander Ah, Zexi Zhang, Yifei Xu, Xinrong Lin, Yang Shao-Horn, Mao Chen
{"title":"Extreme-fast-charging of energy-dense lithium metal batteries enabled by controlled grafting of ionic polymers","authors":"Peng Wen, Huaijiao Wang, Shantao Han, Weiping Li, Louis Alexander Ah, Zexi Zhang, Yifei Xu, Xinrong Lin, Yang Shao-Horn, Mao Chen","doi":"10.1016/j.joule.2025.102004","DOIUrl":null,"url":null,"abstract":"Lithium (Li)-metal batteries (LMBs) integrating ultrahigh energy outputs with extreme-fast-charging (XFC) are critical for forthcoming applications. However, the hostless nature of the metallic Li anode exacerbates interfacial polarization and dendrite formation, which underpins the undesirable trade-off between energy density and charging rate in batteries. Here, we design a molecularly defined interphase that is chemically tethered to the current collector. Such nanometer-thin and single-ion-conducting solid polymer interphase (SPI), different from the repetitively changing solid electrolyte interphase (SEI), offers constant control to accelerate charge transfer and foster uniform Li nucleation and dense plating, thus delivering ultrahigh energy density &gt;300 Wh kg<sup>−1</sup> at 10 C with a thick cathode and lean electrolytes. The innovative interphase engineering strategy is projected to pave the way for versatile fast-charging technologies via manipulating interfacial kinetics of ions.","PeriodicalId":343,"journal":{"name":"Joule","volume":"53 1","pages":""},"PeriodicalIF":38.6000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2025.102004","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium (Li)-metal batteries (LMBs) integrating ultrahigh energy outputs with extreme-fast-charging (XFC) are critical for forthcoming applications. However, the hostless nature of the metallic Li anode exacerbates interfacial polarization and dendrite formation, which underpins the undesirable trade-off between energy density and charging rate in batteries. Here, we design a molecularly defined interphase that is chemically tethered to the current collector. Such nanometer-thin and single-ion-conducting solid polymer interphase (SPI), different from the repetitively changing solid electrolyte interphase (SEI), offers constant control to accelerate charge transfer and foster uniform Li nucleation and dense plating, thus delivering ultrahigh energy density >300 Wh kg−1 at 10 C with a thick cathode and lean electrolytes. The innovative interphase engineering strategy is projected to pave the way for versatile fast-charging technologies via manipulating interfacial kinetics of ions.

Abstract Image

通过控制离子聚合物的接枝,实现能量密集锂金属电池的极快充电
锂(Li)金属电池(lmb)集成了超高能量输出和极快充电(XFC),对未来的应用至关重要。然而,金属锂阳极的无主特性加剧了界面极化和枝晶的形成,这支持了电池中能量密度和充电速率之间的不良权衡。在这里,我们设计了一种分子定义的间相,它被化学地拴在电流收集器上。这种纳米薄的单离子导电固体聚合物界面(SPI)不同于反复变化的固体电解质界面(SEI),它提供恒定的控制来加速电荷转移,促进均匀的锂成核和致密镀层,从而在10℃下以厚阴极和稀薄电解质提供超高能量密度>;300 Wh kg−1。创新的界面工程策略预计将通过控制离子的界面动力学为多功能快速充电技术铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信