{"title":"Systematic profiling reveals betaine as an exercise mimetic for geroprotection","authors":"Lingling Geng, Jiale Ping, Ruochen Wu, Haoteng Yan, Hui Zhang, Yuan Zhuang, Taixin Ning, Jun Wang, Chuqian Liang, Jiachen Zhang, Qingqing Chu, Jing Zhang, Yifan Wen, Yaobin Jing, Shuhui Sun, Qin Qiao, Qian Zhao, Qianzhao Ji, Shuai Ma, Yusheng Cai, Guang-Hui Liu","doi":"10.1016/j.cell.2025.06.001","DOIUrl":null,"url":null,"abstract":"Exercise has well-established health benefits, yet its molecular underpinnings remain incompletely understood. We conducted an integrated multi-omics analysis to compare the effects of acute vs. long-term exercise in healthy males. Acute exercise induced transient responses, whereas repeated exercise triggered adaptive changes, notably reducing cellular senescence and inflammation and enhancing betaine metabolism. Exercise-driven betaine enrichment, partly mediated by renal biosynthesis, exerts geroprotective effects and rescues age-related health decline in mice. Betaine binds to and inhibits TANK-binding kinase 1 (TBK1), retarding the kinetics of aging. These findings systematically elucidate the molecular benefits of exercise and position betaine as an exercise mimetic for healthy aging.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"13 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.06.001","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Exercise has well-established health benefits, yet its molecular underpinnings remain incompletely understood. We conducted an integrated multi-omics analysis to compare the effects of acute vs. long-term exercise in healthy males. Acute exercise induced transient responses, whereas repeated exercise triggered adaptive changes, notably reducing cellular senescence and inflammation and enhancing betaine metabolism. Exercise-driven betaine enrichment, partly mediated by renal biosynthesis, exerts geroprotective effects and rescues age-related health decline in mice. Betaine binds to and inhibits TANK-binding kinase 1 (TBK1), retarding the kinetics of aging. These findings systematically elucidate the molecular benefits of exercise and position betaine as an exercise mimetic for healthy aging.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.