{"title":"Modeling phase separation of biomolecular condensates with data-driven mass-conserving reaction-diffusion systems","authors":"Cheng Li, Man-Ting Guo, Xiaoqing He, Quan-Xing Liu, Zhi Qi","doi":"10.1016/j.str.2025.05.018","DOIUrl":null,"url":null,"abstract":"Phase separation, as one important type of pattern formation, plays a critical role in regulating cellular processes and sustaining ecological resilience. Mass-conserving reaction-diffusion (MCRD) models have been proposed to capture the underlying principles of phase separation. However, previous studies have largely established only phenomenological analogies between MCRD dynamics and phase separation. Here, we identify an experimental model system based on the double-stranded DNA-human protein p53 interactive co-condensate (DPIC). Importantly, all parameters required for the MCRD model can be independently and directly measured in this system, without reliance on parameter estimation or unverified assumptions. We demonstrate that (1) the DPICs serve as an ideal experimental system for establishing a direct and quantitative bridge between experimental DPICs and the MCRD framework and (2) the MCRD model captures more than just a phenomenological resemblance to phase separation, and quantitatively reproduces the underlying dynamics.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"53 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2025.05.018","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Phase separation, as one important type of pattern formation, plays a critical role in regulating cellular processes and sustaining ecological resilience. Mass-conserving reaction-diffusion (MCRD) models have been proposed to capture the underlying principles of phase separation. However, previous studies have largely established only phenomenological analogies between MCRD dynamics and phase separation. Here, we identify an experimental model system based on the double-stranded DNA-human protein p53 interactive co-condensate (DPIC). Importantly, all parameters required for the MCRD model can be independently and directly measured in this system, without reliance on parameter estimation or unverified assumptions. We demonstrate that (1) the DPICs serve as an ideal experimental system for establishing a direct and quantitative bridge between experimental DPICs and the MCRD framework and (2) the MCRD model captures more than just a phenomenological resemblance to phase separation, and quantitatively reproduces the underlying dynamics.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.