Redshift tomography of the kinematic matter dipole

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy
Sebastian von Hausegger, Charles Dalang
{"title":"Redshift tomography of the kinematic matter dipole","authors":"Sebastian von Hausegger, Charles Dalang","doi":"10.1103/physrevd.111.123547","DOIUrl":null,"url":null,"abstract":"The dipole anisotropy induced by our peculiar motion in the sky distribution of cosmologically distant sources is an important consistency test of the standard Friedmann-Lemaître-Robertson-Walker cosmology. In this work, we formalize how to compute the kinematic matter dipole in redshift bins. Apart from the usual terms arising from angular aberration and flux boosting, there is a contribution from the boosting of the redshifts that becomes important when considering a sample selected on observed redshift, leading to nonvanishing correction terms. We discuss examples and provide expressions to incorporate arbitrary redshift selection functions. We also discuss the effect of redshift measurement uncertainties in this context, in particular in upcoming surveys for which we provide estimates of the correction terms. Depending on the shape of a sample’s redshift distribution and on the applied redshift cuts, the correction terms can become substantial, even to the degree that the direction of the dipole is reversed. Lastly, we discuss how cuts on variables correlated with observed redshift, such as color, can induce additional correction terms. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"36 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.123547","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

The dipole anisotropy induced by our peculiar motion in the sky distribution of cosmologically distant sources is an important consistency test of the standard Friedmann-Lemaître-Robertson-Walker cosmology. In this work, we formalize how to compute the kinematic matter dipole in redshift bins. Apart from the usual terms arising from angular aberration and flux boosting, there is a contribution from the boosting of the redshifts that becomes important when considering a sample selected on observed redshift, leading to nonvanishing correction terms. We discuss examples and provide expressions to incorporate arbitrary redshift selection functions. We also discuss the effect of redshift measurement uncertainties in this context, in particular in upcoming surveys for which we provide estimates of the correction terms. Depending on the shape of a sample’s redshift distribution and on the applied redshift cuts, the correction terms can become substantial, even to the degree that the direction of the dipole is reversed. Lastly, we discuss how cuts on variables correlated with observed redshift, such as color, can induce additional correction terms. Published by the American Physical Society 2025
运动物质偶极子的红移断层成像
由我们在宇宙遥远源的天空分布中的特殊运动引起的偶极各向异性是对标准弗里德曼-莱马 -罗伯逊-沃克宇宙学的重要一致性检验。在这项工作中,我们形式化了如何计算红移箱中的运动物质偶极子。除了通常由角像差和通量增强引起的项外,在考虑根据观测到的红移选择的样本时,红移增强的贡献变得很重要,从而导致不消失的校正项。我们讨论了一些例子,并提供了包含任意红移选择函数的表达式。我们还讨论了在这种情况下红移测量不确定度的影响,特别是在即将进行的调查中,我们提供了校正项的估计。根据样品红移分布的形状和应用的红移切割,校正项可以变得很大,甚至到偶极子方向颠倒的程度。最后,我们讨论了与观测到的红移(如颜色)相关的变量切割如何引起额外的校正项。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信