{"title":"Testing the RG running of the leptonic Dirac CP phase with reactor neutrinos","authors":"Shao-Feng Ge, Chui-Fan Kong, Pedro Pasquini","doi":"10.1103/physrevd.111.115031","DOIUrl":null,"url":null,"abstract":"We propose the possibility of using the near detector at reactor neutrino experiments to probe the renormalization group (RG) running effect on the leptonic Dirac C</a:mi>P</a:mi></a:math> phase <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:msub><c:mi>δ</c:mi><c:mi>D</c:mi></c:msub></c:math>. Although the reactor neutrino oscillation cannot directly measure <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:msub><e:mi>δ</e:mi><e:mi>D</e:mi></e:msub></e:math>, it can probe the deviation <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mi mathvariant=\"normal\">Δ</g:mi><g:mi>δ</g:mi><g:mo>≡</g:mo><g:msub><g:mi>δ</g:mi><g:mi>D</g:mi></g:msub><g:mo stretchy=\"false\">(</g:mo><g:msubsup><g:mi>Q</g:mi><g:mi>d</g:mi><g:mn>2</g:mn></g:msubsup><g:mo stretchy=\"false\">)</g:mo><g:mo>−</g:mo><g:msub><g:mi>δ</g:mi><g:mi>D</g:mi></g:msub><g:mo stretchy=\"false\">(</g:mo><g:msubsup><g:mi>Q</g:mi><g:mi>p</g:mi><g:mn>2</g:mn></g:msubsup><g:mo stretchy=\"false\">)</g:mo></g:math> caused by the RG running. Being a key element, the mismatched momentum transfers at neutrino production (<n:math xmlns:n=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><n:msubsup><n:mi>Q</n:mi><n:mi>p</n:mi><n:mn>2</n:mn></n:msubsup></n:math>) and detection (<p:math xmlns:p=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><p:msubsup><p:mi>Q</p:mi><p:mi>d</p:mi><p:mn>2</p:mn></p:msubsup></p:math>) processes can differ by two orders. We illustrate this concept with the upcoming Taishan Antineutrino Observatory (TAO, also known as JUNO-TAO) experiment and obtain the projected sensitivity to the <r:math xmlns:r=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><r:mi>C</r:mi><r:mi>P</r:mi></r:math> RG running beta function <t:math xmlns:t=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><t:msub><t:mi>β</t:mi><t:mi>δ</t:mi></t:msub></t:math>. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"235 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.115031","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We propose the possibility of using the near detector at reactor neutrino experiments to probe the renormalization group (RG) running effect on the leptonic Dirac CP phase δD. Although the reactor neutrino oscillation cannot directly measure δD, it can probe the deviation Δδ≡δD(Qd2)−δD(Qp2) caused by the RG running. Being a key element, the mismatched momentum transfers at neutrino production (Qp2) and detection (Qd2) processes can differ by two orders. We illustrate this concept with the upcoming Taishan Antineutrino Observatory (TAO, also known as JUNO-TAO) experiment and obtain the projected sensitivity to the CP RG running beta function βδ. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.