Interfacial Engineering of Pd Nanoparticles on Fe3O4–rGO Composite Support for High-Chemoselective Nitroaromatic Hydrogenation

IF 3.8 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Zhiyuan Wang, Libo Wang, Shihao Cui, Dejian Xu, Hui Wang, Honghao Liu, Haipeng Zhang, Ning Gong, Qingshan Zhao, Mingbo Wu
{"title":"Interfacial Engineering of Pd Nanoparticles on Fe3O4–rGO Composite Support for High-Chemoselective Nitroaromatic Hydrogenation","authors":"Zhiyuan Wang, Libo Wang, Shihao Cui, Dejian Xu, Hui Wang, Honghao Liu, Haipeng Zhang, Ning Gong, Qingshan Zhao, Mingbo Wu","doi":"10.1021/acs.iecr.5c01300","DOIUrl":null,"url":null,"abstract":"Pd-based catalysts play a pivotal role in nitroaromatic hydrogenation for fine chemical synthesis, yet their intrinsic overactivity often undermines target selectivity. In this study, we develop a highly efficient and magnetically recoverable Pd/Fe<sub>3</sub>O<sub>4</sub>–rGO catalyst for nitroaromatic hydrogenation through dual-support interfacial engineering, realized by precisely anchoring Pd nanoparticles at the heterojunctions of ferrosoferric oxide and reduced graphene oxide (Fe<sub>3</sub>O<sub>4</sub>–rGO). The dual-support modulation effect not only ensures uniform Pd distribution via strong interfacial interaction but also drives directional charge transfer from Pd to the Fe<sub>3</sub>O<sub>4</sub>–rGO composite support, synergistically enhancing nitro group adsorption and optimizing H<sub>2</sub> dissociation kinetics. The prepared Pd/Fe<sub>3</sub>O<sub>4</sub>–rGO catalyst achieves exceptional catalytic performance with 99% conversion and &gt;97% selectivity for the chemoselective hydrogenation of diverse nitroaromatics under mild conditions while maintaining remarkable activity/selectivity over multiple cycles. Notably, the integrated Fe<sub>3</sub>O<sub>4</sub> component facilitates efficient magnetic separation (&lt;2 min), demonstrating industrial viability for continuous processes. This work provides a rational dual-support strategy that simultaneously regulates spatial configuration and electronic states of active sites to overcome the activity-selectivity trade-off in hydrogenation catalysis.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"51 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.5c01300","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Pd-based catalysts play a pivotal role in nitroaromatic hydrogenation for fine chemical synthesis, yet their intrinsic overactivity often undermines target selectivity. In this study, we develop a highly efficient and magnetically recoverable Pd/Fe3O4–rGO catalyst for nitroaromatic hydrogenation through dual-support interfacial engineering, realized by precisely anchoring Pd nanoparticles at the heterojunctions of ferrosoferric oxide and reduced graphene oxide (Fe3O4–rGO). The dual-support modulation effect not only ensures uniform Pd distribution via strong interfacial interaction but also drives directional charge transfer from Pd to the Fe3O4–rGO composite support, synergistically enhancing nitro group adsorption and optimizing H2 dissociation kinetics. The prepared Pd/Fe3O4–rGO catalyst achieves exceptional catalytic performance with 99% conversion and >97% selectivity for the chemoselective hydrogenation of diverse nitroaromatics under mild conditions while maintaining remarkable activity/selectivity over multiple cycles. Notably, the integrated Fe3O4 component facilitates efficient magnetic separation (<2 min), demonstrating industrial viability for continuous processes. This work provides a rational dual-support strategy that simultaneously regulates spatial configuration and electronic states of active sites to overcome the activity-selectivity trade-off in hydrogenation catalysis.

Abstract Image

高化学选择性硝基芳烃加氢载体上Pd纳米颗粒的界面工程
钯基催化剂在精细化学合成的硝基芳香族加氢反应中起着关键作用,但其固有的过度活性往往会破坏目标的选择性。在这项研究中,我们通过双支持界面工程,通过在氧化铁和还原氧化石墨烯(Fe3O4-rGO)的异质结处精确锚定Pd纳米粒子,开发了一种高效磁可回收的Pd/ Fe3O4-rGO硝基芳烃加氢催化剂。双载体调制效应不仅通过强大的界面相互作用保证了Pd的均匀分布,而且还驱动了Pd向Fe3O4-rGO复合载体的定向电荷转移,协同增强了硝基吸附,优化了H2解离动力学。制备的Pd/ Fe3O4-rGO催化剂在温和条件下对多种硝基芳烃的化学选择性加氢具有99%的转化率和97%的选择性,并在多个循环中保持了良好的活性/选择性。值得注意的是,集成的Fe3O4组件促进了高效的磁分离(2分钟),证明了连续过程的工业可行性。本研究提供了一种合理的双支持策略,同时调节活性位点的空间构型和电子状态,以克服加氢催化中的活性-选择性权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信