{"title":"From Codebooks to Promptbooks: Extracting Information from Text with Generative Large Language Models","authors":"Oscar Stuhler, Cat Dang Ton, Etienne Ollion","doi":"10.1177/00491241251336794","DOIUrl":null,"url":null,"abstract":"Generative AI (GenAI) is quickly becoming a valuable tool for sociological research. Already, sociologists employ GenAI for tasks like classifying text and simulating human agents. We point to another major use case: the extraction of structured information from unstructured text. Information Extraction (IE) is an established branch of Natural Language Processing, but leveraging the affordances of this paradigm has thus far required familiarity with specialized models. GenAI changes this by allowing researchers to define their own IE tasks and execute them via targeted prompts. This article explores the potential of open-source large language models for IE by extracting and encoding biographical information (e.g., age, occupation, origin) from a corpus of newspaper obituaries. As we proceed, we discuss how sociologists can develop and evaluate prompt architectures for such tasks, turning codebooks into “promptbooks.” We also evaluate models of different sizes and prompting techniques. Our analysis showcases the potential of GenAI as a flexible and accessible tool for IE while also underscoring risks like non-random error patterns that can bias downstream analyses.","PeriodicalId":21849,"journal":{"name":"Sociological Methods & Research","volume":"20 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sociological Methods & Research","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/00491241251336794","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Generative AI (GenAI) is quickly becoming a valuable tool for sociological research. Already, sociologists employ GenAI for tasks like classifying text and simulating human agents. We point to another major use case: the extraction of structured information from unstructured text. Information Extraction (IE) is an established branch of Natural Language Processing, but leveraging the affordances of this paradigm has thus far required familiarity with specialized models. GenAI changes this by allowing researchers to define their own IE tasks and execute them via targeted prompts. This article explores the potential of open-source large language models for IE by extracting and encoding biographical information (e.g., age, occupation, origin) from a corpus of newspaper obituaries. As we proceed, we discuss how sociologists can develop and evaluate prompt architectures for such tasks, turning codebooks into “promptbooks.” We also evaluate models of different sizes and prompting techniques. Our analysis showcases the potential of GenAI as a flexible and accessible tool for IE while also underscoring risks like non-random error patterns that can bias downstream analyses.
期刊介绍:
Sociological Methods & Research is a quarterly journal devoted to sociology as a cumulative empirical science. The objectives of SMR are multiple, but emphasis is placed on articles that advance the understanding of the field through systematic presentations that clarify methodological problems and assist in ordering the known facts in an area. Review articles will be published, particularly those that emphasize a critical analysis of the status of the arts, but original presentations that are broadly based and provide new research will also be published. Intrinsically, SMR is viewed as substantive journal but one that is highly focused on the assessment of the scientific status of sociology. The scope is broad and flexible, and authors are invited to correspond with the editors about the appropriateness of their articles.