Generative AI: a generation-defining shift for biopharma regulatory affairs

Jon Williams, Donna Boyce, Graziella Collu, Sean Curtis, Ramzi Dagher, Peter Gamble, Magdalena Jayatissa, Eugene Leypunskiy, Sabine Luik, Beatriz Monedero Alvarez, Trine Birgitte Moulvad, Meena Murugappan, Alexandra Pearce, Eddie Reilly, Piero Rijli, Ruben Rizzi, Katrin Rupalla, Punam Sandhu, Thomas Seck, Michael Søberg Christensen, Mark Taisey, Cyril Widmaier, Myrto Lee
{"title":"Generative AI: a generation-defining shift for biopharma regulatory affairs","authors":"Jon Williams, Donna Boyce, Graziella Collu, Sean Curtis, Ramzi Dagher, Peter Gamble, Magdalena Jayatissa, Eugene Leypunskiy, Sabine Luik, Beatriz Monedero Alvarez, Trine Birgitte Moulvad, Meena Murugappan, Alexandra Pearce, Eddie Reilly, Piero Rijli, Ruben Rizzi, Katrin Rupalla, Punam Sandhu, Thomas Seck, Michael Søberg Christensen, Mark Taisey, Cyril Widmaier, Myrto Lee","doi":"10.1038/d41573-025-00089-9","DOIUrl":null,"url":null,"abstract":"As biopharmaceutical companies face mounting pressure to accelerate development timelines and improve the speed and quality of regulatory submissions, many are actively exploring the potential of generative artificial intelligence (GenAI) to transform how regulatory work gets done. This article examines how leading organizations are beginning to apply GenAI to automate content creation, analyse complex data, and streamline core regulatory activities — and the critical success factors for driving adoption at scale.","PeriodicalId":18847,"journal":{"name":"Nature Reviews Drug Discovery","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Drug Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/d41573-025-00089-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As biopharmaceutical companies face mounting pressure to accelerate development timelines and improve the speed and quality of regulatory submissions, many are actively exploring the potential of generative artificial intelligence (GenAI) to transform how regulatory work gets done. This article examines how leading organizations are beginning to apply GenAI to automate content creation, analyse complex data, and streamline core regulatory activities — and the critical success factors for driving adoption at scale.
随着生物制药公司面临越来越大的压力,需要加快开发时间表,提高提交监管文件的速度和质量,许多公司正在积极探索生成式人工智能(GenAI)的潜力,以改变监管工作的完成方式。本文研究了领先的组织如何开始应用GenAI来自动化内容创建、分析复杂数据和简化核心监管活动,以及推动大规模采用的关键成功因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信