Screening macrocyclic peptide libraries by yeast display allows control of selection process and affinity ranking

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Sara Linciano, Ylenia Mazzocato, Zhanna Romanyuk, Filippo Vascon, Lluc Farrera-Soler, Edward Will, Yuyu Xing, Shiyu Chen, Yoichi Kumada, Marta Simeoni, Alessandro Scarso, Laura Cendron, Christian Heinis, Alessandro Angelini
{"title":"Screening macrocyclic peptide libraries by yeast display allows control of selection process and affinity ranking","authors":"Sara Linciano, Ylenia Mazzocato, Zhanna Romanyuk, Filippo Vascon, Lluc Farrera-Soler, Edward Will, Yuyu Xing, Shiyu Chen, Yoichi Kumada, Marta Simeoni, Alessandro Scarso, Laura Cendron, Christian Heinis, Alessandro Angelini","doi":"10.1038/s41467-025-60907-x","DOIUrl":null,"url":null,"abstract":"<p>Macrocyclic peptides represent an attractive drug modality due to their favourable properties and amenability to in vitro evolution techniques such as phage or mRNA display. Although very powerful, these technologies are not without limitations. In this work, we address some of their drawbacks by developing a yeast display-based strategy to generate, screen and characterise structurally diverse disulfide-cyclised peptides. The use of quantitative flow cytometry enables real-time monitoring of the screening of millions of individual macrocyclic peptides, leading to the identification of ligands with good binding properties to five different protein targets. X-ray analysis of a selected ligand in complex with its target reveals optimal shape complementarity and extensive surface interaction, explaining its exquisite affinity and selectivity. The yeast display-based approach described here offers a facile, quantitative and cost-effective alternative to rapidly and efficiently discover and characterise genetically encoded macrocyclic peptide ligands with sufficiently good binding properties against therapeutically relevant targets.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"17 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60907-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Macrocyclic peptides represent an attractive drug modality due to their favourable properties and amenability to in vitro evolution techniques such as phage or mRNA display. Although very powerful, these technologies are not without limitations. In this work, we address some of their drawbacks by developing a yeast display-based strategy to generate, screen and characterise structurally diverse disulfide-cyclised peptides. The use of quantitative flow cytometry enables real-time monitoring of the screening of millions of individual macrocyclic peptides, leading to the identification of ligands with good binding properties to five different protein targets. X-ray analysis of a selected ligand in complex with its target reveals optimal shape complementarity and extensive surface interaction, explaining its exquisite affinity and selectivity. The yeast display-based approach described here offers a facile, quantitative and cost-effective alternative to rapidly and efficiently discover and characterise genetically encoded macrocyclic peptide ligands with sufficiently good binding properties against therapeutically relevant targets.

Abstract Image

酵母显示筛选大环肽库可以控制选择过程和亲和等级
由于其良好的特性和体外进化技术(如噬菌体或mRNA展示)的适应性,大环肽代表了一种有吸引力的药物模式。尽管这些技术非常强大,但它们并非没有局限性。在这项工作中,我们通过开发一种基于酵母显示的策略来生成、筛选和表征结构多样化的二硫环化肽,从而解决了它们的一些缺点。使用定量流式细胞术可以实时监测数百万个单个大环肽的筛选,从而鉴定出与五种不同蛋白质靶标具有良好结合特性的配体。x射线分析表明,一个选定的配体在配合物中与其目标具有最佳的形状互补和广泛的表面相互作用,解释了其精致的亲和力和选择性。本文描述的基于酵母显示的方法提供了一种简单、定量和经济有效的替代方法,可以快速有效地发现和表征具有足够好的结合特性的遗传编码大环肽配体,以对抗治疗相关靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信