{"title":"Metasurface‐Controlled Highly Sensitive CsFAMA/PEDOT: PSS Heterojunction Terahertz Thermoelectric Polarization Detection and Imaging","authors":"Yifan Li, Yiming Jia, Chenyu Luo, Yinghui Wu, Jiamin Hu, Yajun Cao, Xuyang Zhang, He Yang, Cunguang Lou, Xiuling Liu, Long‐Biao Huang, Jianquan Yao","doi":"10.1002/lpor.202500910","DOIUrl":null,"url":null,"abstract":"Developing highly sensitive and stable terahertz (THz) polarization detection and imaging systems is crucial for remote sensing, communication, military surveillance, and imaging. However, achieving high sensitivity and stability while effectively suppressing background interference in complex target imaging presents several significant challenges. Herein, two different metasurface structures (type I and type II) and different Cs<jats:sub>0.05</jats:sub>(FA<jats:sub>0.85</jats:sub>MA<jats:sub>0.15</jats:sub>)<jats:sub>0.95</jats:sub>Pb(I<jats:sub>0.85</jats:sub>Br<jats:sub>0.15</jats:sub>)<jats:sub>3</jats:sub> (CsFAMA) thicknesses of THz polarization detectors are designed and fabricated, which based on CsFAMA /poly(3,4‐ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT: PSS)/ Metasurface composite structures. The type II device with a 0.8 µm CsFAMA thickness achieved optimal performance under 0.1 THz laser irradiation, with a responsivity of 435.81 V W⁻¹, a polarization ratio of 2.53, and a fast response time of 93 µs, attributed to the heterojunction and metasurface‐localized thermoelectric field. In addition, stability tests are carried out under standard conditions, the polarization ratio decreased by only 3%, and further accelerated aging tests at high temperature and high humidity revealed that the polarization ratio decreased by 15% and 27%, respectively. The polarization imaging clearly and distinctly shows three different complex patterns even after 360 days of air exposure. This study highlights the potential of CsFAMA/metasurface composite devices for highly sensitive and stable THz polarization detection and imaging applications.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"17 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202500910","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Developing highly sensitive and stable terahertz (THz) polarization detection and imaging systems is crucial for remote sensing, communication, military surveillance, and imaging. However, achieving high sensitivity and stability while effectively suppressing background interference in complex target imaging presents several significant challenges. Herein, two different metasurface structures (type I and type II) and different Cs0.05(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3 (CsFAMA) thicknesses of THz polarization detectors are designed and fabricated, which based on CsFAMA /poly(3,4‐ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT: PSS)/ Metasurface composite structures. The type II device with a 0.8 µm CsFAMA thickness achieved optimal performance under 0.1 THz laser irradiation, with a responsivity of 435.81 V W⁻¹, a polarization ratio of 2.53, and a fast response time of 93 µs, attributed to the heterojunction and metasurface‐localized thermoelectric field. In addition, stability tests are carried out under standard conditions, the polarization ratio decreased by only 3%, and further accelerated aging tests at high temperature and high humidity revealed that the polarization ratio decreased by 15% and 27%, respectively. The polarization imaging clearly and distinctly shows three different complex patterns even after 360 days of air exposure. This study highlights the potential of CsFAMA/metasurface composite devices for highly sensitive and stable THz polarization detection and imaging applications.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.