Seonkwon Kim,Seongil Im,In Cheol Kwak,Jungwha Lee,Dong Gue Roe,Hyunsu Ju,Jeong Ho Cho
{"title":"Hardware Implementation of On-Chip Hebbian Learning Through Integrated Neuromorphic Architecture.","authors":"Seonkwon Kim,Seongil Im,In Cheol Kwak,Jungwha Lee,Dong Gue Roe,Hyunsu Ju,Jeong Ho Cho","doi":"10.1002/adma.202506920","DOIUrl":null,"url":null,"abstract":"The von Neumann bottleneck and growing energy demands of conventional computing systems require innovative architectural solutions. Although neuromorphic computing is a promising alternative, implementing efficient on-chip learning mechanisms remains a fundamental challenge. Herein, a novel artificial neural platform is presented that integrates three synergistic components: modulation-optimized presynaptic transistors, threshold switching memristor-based neurons, and adaptive feedback synapses. The platform demonstrates real-time synaptic weight modification through correlation-based learning, effectively implementing Hebbian principles in hardware without requiring extensive peripheral circuitry. Stable device operation and successful implementation of local learning rules are confirmed by systematically characterizing a 6 × 6 array configuration. The experimental results demonstrate a correlation between input-output signals and subsequent weight modifications, establishing a viable pathway toward hardware implementation of Hebbian learning in neuromorphic systems.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"13 1","pages":"e2506920"},"PeriodicalIF":27.4000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202506920","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The von Neumann bottleneck and growing energy demands of conventional computing systems require innovative architectural solutions. Although neuromorphic computing is a promising alternative, implementing efficient on-chip learning mechanisms remains a fundamental challenge. Herein, a novel artificial neural platform is presented that integrates three synergistic components: modulation-optimized presynaptic transistors, threshold switching memristor-based neurons, and adaptive feedback synapses. The platform demonstrates real-time synaptic weight modification through correlation-based learning, effectively implementing Hebbian principles in hardware without requiring extensive peripheral circuitry. Stable device operation and successful implementation of local learning rules are confirmed by systematically characterizing a 6 × 6 array configuration. The experimental results demonstrate a correlation between input-output signals and subsequent weight modifications, establishing a viable pathway toward hardware implementation of Hebbian learning in neuromorphic systems.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.