Titanium-Polyoxometalate Crosslinked Metallo-Supramolecular Polymer as Artificial Interfacial Layer for Highly Persistent and Low-Temperature Tolerant Lithium Metal Batteries.

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yaoda Wang,Pei-Chen Zhao,Jingjie Sun,Junchuan Liang,Tianyu Shen,Cheng-Hui Li,Zhong Jin
{"title":"Titanium-Polyoxometalate Crosslinked Metallo-Supramolecular Polymer as Artificial Interfacial Layer for Highly Persistent and Low-Temperature Tolerant Lithium Metal Batteries.","authors":"Yaoda Wang,Pei-Chen Zhao,Jingjie Sun,Junchuan Liang,Tianyu Shen,Cheng-Hui Li,Zhong Jin","doi":"10.1002/anie.202508224","DOIUrl":null,"url":null,"abstract":"The uncontrolled lithium (Li) dendrite growth and fragile native solid electrolyte interphase formation have severely hindered the practical development of Li metal batteries. Herein, a coordinatively cross-linked metallo-supramolecular polymer as anodic interfacial protective layer (MSP-IPL) is developed by utilizing titanium(IV)-polyoxometalates (Ti-POMs) as hexatopic linkers to bridge organic and inorganic moieties. The constructed MSP-IPL possesses high electrochemical stability, superior ion-transfer ability, and good air stability. Due to its high film formation uniformity and mechanical tenacity, the MSP-IPL can effectively avoid non-uniform Li deposition caused by the tip effect, thus inhibiting Li dendrite proliferation. The uniformly distributed Ti-POMs in polymer skeleton can efficiently bind with PF6- anions, thus increasing Li+ transference number and promoting homogeneous Li+ distribution. The re-processability and self-healing ability endowed by dynamic coordination bonds enable the MSP-IPL to accommodate electrode volume changes and maintain good interface contact. Consequently, high-loading Li||LiFePO4 and Li||LiNi0.8Co0.1Mn0.1O2 batteries based on MSP-IPL-coated Li anodes demonstrate impressive cyclability and extraordinary rate capability. Even at a low temperature of -20 °C, the MSP-IPL-coated Li||NCM811 batteries can still cycle stably for over 500 cycles (equivalent to 138 days) with a considerable capacity retention of 86.8%. This work presents a promising solution for developing practical low-temperature Li metal batteries.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"20 1","pages":"e202508224"},"PeriodicalIF":16.1000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202508224","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The uncontrolled lithium (Li) dendrite growth and fragile native solid electrolyte interphase formation have severely hindered the practical development of Li metal batteries. Herein, a coordinatively cross-linked metallo-supramolecular polymer as anodic interfacial protective layer (MSP-IPL) is developed by utilizing titanium(IV)-polyoxometalates (Ti-POMs) as hexatopic linkers to bridge organic and inorganic moieties. The constructed MSP-IPL possesses high electrochemical stability, superior ion-transfer ability, and good air stability. Due to its high film formation uniformity and mechanical tenacity, the MSP-IPL can effectively avoid non-uniform Li deposition caused by the tip effect, thus inhibiting Li dendrite proliferation. The uniformly distributed Ti-POMs in polymer skeleton can efficiently bind with PF6- anions, thus increasing Li+ transference number and promoting homogeneous Li+ distribution. The re-processability and self-healing ability endowed by dynamic coordination bonds enable the MSP-IPL to accommodate electrode volume changes and maintain good interface contact. Consequently, high-loading Li||LiFePO4 and Li||LiNi0.8Co0.1Mn0.1O2 batteries based on MSP-IPL-coated Li anodes demonstrate impressive cyclability and extraordinary rate capability. Even at a low temperature of -20 °C, the MSP-IPL-coated Li||NCM811 batteries can still cycle stably for over 500 cycles (equivalent to 138 days) with a considerable capacity retention of 86.8%. This work presents a promising solution for developing practical low-temperature Li metal batteries.
钛-聚金属氧酸酯交联金属-超分子聚合物作为高持久耐低温锂金属电池的人工界面层。
不受控制的锂枝晶生长和脆弱的原生固体电解质界面形成严重阻碍了锂金属电池的实制化发展。本文以钛(IV)-多金属氧酸酯(ti - pom)为六配位连接剂,构建了一种配合交联的金属超分子聚合物作为阳极界面保护层(MSP-IPL)。所构建的MSP-IPL具有较高的电化学稳定性、优异的离子转移能力和良好的空气稳定性。由于MSP-IPL具有较高的成膜均匀性和机械韧性,可以有效避免由于尖端效应导致的不均匀的Li沉积,从而抑制Li枝晶的增殖。聚合物骨架中均匀分布的ti - pom能有效地与PF6-阴离子结合,从而增加Li+的转移数量,促进Li+的均匀分布。动态配位键所赋予的再加工能力和自愈能力使MSP-IPL能够适应电极体积的变化并保持良好的界面接触。因此,基于msp - ipl涂层锂阳极的高负载锂||LiFePO4和锂||LiNi0.8Co0.1Mn0.1O2电池表现出令人印象深刻的可循环性和非凡的倍率能力。即使在-20°C的低温下,msp - ipl涂层的Li||NCM811电池仍然可以稳定循环超过500个循环(相当于138天),容量保持率为86.8%。这项工作为开发实用的低温锂金属电池提供了一个有前途的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信