{"title":"PAM-free hairpin target binding activates trans-cleavage activity of Cas12a.","authors":"Xiaolong Li,Zixuan Zhu,Jiani Wu,Changjiang Li,Zhujun Liu,Jinjin Wang,Pu Li,Zhen Zhang,Yongming Huang,Jiaxin Hong,Tongbo Wu","doi":"10.1093/nar/gkaf596","DOIUrl":null,"url":null,"abstract":"CRISPR-Cas12a has been demonstrated to be activated for its trans-cleavage activity by single- and double-stranded DNA containing a protospacer adjacent motif (PAM), but other types of activators have remained undiscovered. In this work, we found that a hairpin-structured substrate can activate the trans-cleavage activity of Cas12a without a PAM, and the parameters of the hairpin loop obviously affect the activity. Cas12a exhibits sequence preference for proximal loops, preferring to recognize polyadenine hairpin loop activators. Molecular docking and dynamic calculations provide a theoretical basis for the activation of Cas12a by hairpin activators. Leveraging the efficient activation capability of the hairpin activator, we constructed an allosteric detection platform for non-nucleic acid targets, capable of sensitively and specifically detecting hypochlorous acid and calcium ions. This novel activator of Cas12a holds enormous potential for the development of multi-functional biological platforms.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"59 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf596","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
CRISPR-Cas12a has been demonstrated to be activated for its trans-cleavage activity by single- and double-stranded DNA containing a protospacer adjacent motif (PAM), but other types of activators have remained undiscovered. In this work, we found that a hairpin-structured substrate can activate the trans-cleavage activity of Cas12a without a PAM, and the parameters of the hairpin loop obviously affect the activity. Cas12a exhibits sequence preference for proximal loops, preferring to recognize polyadenine hairpin loop activators. Molecular docking and dynamic calculations provide a theoretical basis for the activation of Cas12a by hairpin activators. Leveraging the efficient activation capability of the hairpin activator, we constructed an allosteric detection platform for non-nucleic acid targets, capable of sensitively and specifically detecting hypochlorous acid and calcium ions. This novel activator of Cas12a holds enormous potential for the development of multi-functional biological platforms.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.