Dynamic properties of Lotka–Volterra systems corresponding to the colonization model

IF 1.8 4区 数学 Q2 BIOLOGY
Atsushi Yamauchi
{"title":"Dynamic properties of Lotka–Volterra systems corresponding to the colonization model","authors":"Atsushi Yamauchi","doi":"10.1016/j.mbs.2025.109500","DOIUrl":null,"url":null,"abstract":"<div><div>The colonization model, also known as the Levins model, has been developed to understand the mechanisms that drive species coexistence under interspecific competition. Previous simulation studies have shown that the dynamic properties of the model significantly depend on the encounter mode between propagules and colonization sites. Perfect mass action encounters result in convergence towards equilibrium, while perfect ratio-dependent encounters lead to multiple continuously transient trajectories that depend on the initial condition. In the present study, I investigate the properties of the dynamics by transforming the colonization model into a Lotka-Volterra model. I show that the eigenvalues of the Jacobian matrix indicate stability of the equilibrium under perfect mass action encounters, while the Lyapunov function shows the existence of an infinite number of continuously transient trajectories under perfect ratio-dependent encounters. These results highlight new properties of Lotka-Volterra systems and the colonization model, and provide new insights into the mechanisms and dynamic processes involved in the coexistence of multiple species.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"387 ","pages":"Article 109500"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556425001269","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The colonization model, also known as the Levins model, has been developed to understand the mechanisms that drive species coexistence under interspecific competition. Previous simulation studies have shown that the dynamic properties of the model significantly depend on the encounter mode between propagules and colonization sites. Perfect mass action encounters result in convergence towards equilibrium, while perfect ratio-dependent encounters lead to multiple continuously transient trajectories that depend on the initial condition. In the present study, I investigate the properties of the dynamics by transforming the colonization model into a Lotka-Volterra model. I show that the eigenvalues of the Jacobian matrix indicate stability of the equilibrium under perfect mass action encounters, while the Lyapunov function shows the existence of an infinite number of continuously transient trajectories under perfect ratio-dependent encounters. These results highlight new properties of Lotka-Volterra systems and the colonization model, and provide new insights into the mechanisms and dynamic processes involved in the coexistence of multiple species.
Lotka-Volterra系统对应殖民化模型的动态特性。
殖民化模型,也被称为列文模型,是为了理解种间竞争下驱动物种共存的机制而发展起来的。以往的仿真研究表明,该模型的动态特性在很大程度上取决于繁殖体与定植点之间的相遇模式。完美的质量作用相遇导致向平衡收敛,而完美的比率依赖相遇导致依赖于初始条件的多个连续瞬态轨迹。在本研究中,我通过将定植模型转化为Lotka-Volterra模型来研究动态特性。我证明了雅可比矩阵的特征值表明在完美质量作用碰撞下平衡的稳定性,而Lyapunov函数表明在完美比例依赖碰撞下存在无限数量的连续瞬态轨迹。这些结果突出了Lotka-Volterra系统和定殖模型的新特性,并为多物种共存的机制和动态过程提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Biosciences
Mathematical Biosciences 生物-生物学
CiteScore
7.50
自引率
2.30%
发文量
67
审稿时长
18 days
期刊介绍: Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信