Mengyuan Zhang, Ben Wan, Mouyuan Sun, Jiafei Sun, Yi Zhu, Gang Wu, Ping Sun
{"title":"Harnessing Immunomodulation: How Calcium Phosphate Biomaterials Orchestrate Bone Regeneration.","authors":"Mengyuan Zhang, Ben Wan, Mouyuan Sun, Jiafei Sun, Yi Zhu, Gang Wu, Ping Sun","doi":"10.1089/ten.tea.2025.0091","DOIUrl":null,"url":null,"abstract":"<p><p>The immune system and biomaterials exhibit a well-documented synergistic interplay, essential for bone defect healing. Calcium phosphate (CaP) biomaterials, notably hydroxyapatite, β-tricalcium phosphate, and biphasic calcium phosphate, are widely employed as bone substitutes due to their inherent osteoconductivity. A key challenge for synthetic CaPs is augmenting their osteoinductive potential. Indeed, the limited translation of biomaterials into clinical practice may largely stem from insufficient immunomodulatory understanding. Current evidence reveals the complex host immune response to CaPs, which is mediated by physical and biochemical properties. Harnessing immunomodulatory strategies could bridge inflammatory modulation and osteogenesis, thereby enhancing bone regeneration. This review systematically analyzes recent advances in the molecular mechanisms of immune cell responses to CaPs during bone defect healing, deepening our understanding of immunomodulatory strategies for bone regeneration. Furthermore, key knowledge gaps are highlighted to inspire the development of spatiotemporally responsive CaPs for bone tissue engineering.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering Part A","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.tea.2025.0091","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The immune system and biomaterials exhibit a well-documented synergistic interplay, essential for bone defect healing. Calcium phosphate (CaP) biomaterials, notably hydroxyapatite, β-tricalcium phosphate, and biphasic calcium phosphate, are widely employed as bone substitutes due to their inherent osteoconductivity. A key challenge for synthetic CaPs is augmenting their osteoinductive potential. Indeed, the limited translation of biomaterials into clinical practice may largely stem from insufficient immunomodulatory understanding. Current evidence reveals the complex host immune response to CaPs, which is mediated by physical and biochemical properties. Harnessing immunomodulatory strategies could bridge inflammatory modulation and osteogenesis, thereby enhancing bone regeneration. This review systematically analyzes recent advances in the molecular mechanisms of immune cell responses to CaPs during bone defect healing, deepening our understanding of immunomodulatory strategies for bone regeneration. Furthermore, key knowledge gaps are highlighted to inspire the development of spatiotemporally responsive CaPs for bone tissue engineering.
期刊介绍:
Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.