Muscle Synergies in Single-Leg Hops: Neuromuscular Adaptations for Increased Hop Distance.

IF 1.1 4区 医学 Q4 ENGINEERING, BIOMEDICAL
Hiroki Saito, Ayu Yamano, Nanae Suzuki, Kazuya Matsushita, Hikaru Yokoyama, Joachim Van Cant, Kimitaka Nakazawa
{"title":"Muscle Synergies in Single-Leg Hops: Neuromuscular Adaptations for Increased Hop Distance.","authors":"Hiroki Saito, Ayu Yamano, Nanae Suzuki, Kazuya Matsushita, Hikaru Yokoyama, Joachim Van Cant, Kimitaka Nakazawa","doi":"10.1123/jab.2024-0132","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated differences in muscle synergies in the trunk and lower limbs during single-leg hops at 30% (SLH30) and 100% (SLH100) of maximum distance to understand the neuromechanical mechanisms underlying longer hop distances. Unilateral surface EMG data were collected from 16 muscle groups in the trunk and lower limbs during both SLH30 and SLH100 in 10 healthy males. Nonnegative matrix factorization was used to extract muscle synergies. The number of muscle synergies in SLH100 was significantly higher than in SLH30 (P = .0078, effect size = 1.28), with median values of 4.0 (3.0-5.0) for SLH30 and 5.0 (4.0-6.0) for SLH100. We identified 4 shared muscle synergies between SLH30 and SLH100, signifying a foundational neuromuscular control strategy. In addition, muscle synergies specific to SLH100 demonstrated the involvement of abdominal muscles and hip and ankle extensor muscles, highlighting their contributions to achieving longer hopping distances. Interventions aimed at enhancing SLH performance for return to sport may benefit from incorporating exercises targeting these synergy patterns. However, it should be noted that SLH100 synergies primarily involved nonknee muscles, warranting caution when using SLH as an indicator of knee function as improvements in hop distance may not directly reflect knee-specific recovery.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":" ","pages":"1-9"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1123/jab.2024-0132","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated differences in muscle synergies in the trunk and lower limbs during single-leg hops at 30% (SLH30) and 100% (SLH100) of maximum distance to understand the neuromechanical mechanisms underlying longer hop distances. Unilateral surface EMG data were collected from 16 muscle groups in the trunk and lower limbs during both SLH30 and SLH100 in 10 healthy males. Nonnegative matrix factorization was used to extract muscle synergies. The number of muscle synergies in SLH100 was significantly higher than in SLH30 (P = .0078, effect size = 1.28), with median values of 4.0 (3.0-5.0) for SLH30 and 5.0 (4.0-6.0) for SLH100. We identified 4 shared muscle synergies between SLH30 and SLH100, signifying a foundational neuromuscular control strategy. In addition, muscle synergies specific to SLH100 demonstrated the involvement of abdominal muscles and hip and ankle extensor muscles, highlighting their contributions to achieving longer hopping distances. Interventions aimed at enhancing SLH performance for return to sport may benefit from incorporating exercises targeting these synergy patterns. However, it should be noted that SLH100 synergies primarily involved nonknee muscles, warranting caution when using SLH as an indicator of knee function as improvements in hop distance may not directly reflect knee-specific recovery.

单腿跳跃的肌肉协同作用:增加跳跃距离的神经肌肉适应。
本研究研究了30% (SLH30)和100% (SLH100)单腿跳跃时躯干和下肢肌肉协同作用的差异,以了解长距离跳跃的神经力学机制。在SLH30和SLH100期间收集10名健康男性躯干和下肢16个肌群的单侧表面肌电信号数据。采用非负矩阵分解法提取肌肉协同效应。SLH100的肌肉协同效应数显著高于SLH30 (P = 0.0078,效应量= 1.28),中位数为4.0 (3.0 ~ 5.0),SLH100为5.0(4.0 ~ 6.0)。我们在SLH30和SLH100之间发现了4个共同的肌肉协同作用,这表明了一种基本的神经肌肉控制策略。此外,SLH100特有的肌肉协同作用表明腹部肌肉、髋关节和踝关节伸肌参与其中,突出了它们对实现更远的跳跃距离的贡献。干预措施旨在提高SLH的表现,以恢复运动可能受益于结合针对这些协同模式的锻炼。然而,应该注意的是,SLH100的协同作用主要涉及非膝关节肌肉,当使用SLH作为膝关节功能的指标时需要谨慎,因为跳跃距离的改善可能不能直接反映膝关节特异性恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Biomechanics
Journal of Applied Biomechanics 医学-工程:生物医学
CiteScore
2.00
自引率
0.00%
发文量
47
审稿时长
6-12 weeks
期刊介绍: The mission of the Journal of Applied Biomechanics (JAB) is to disseminate the highest quality peer-reviewed studies that utilize biomechanical strategies to advance the study of human movement. Areas of interest include clinical biomechanics, gait and posture mechanics, musculoskeletal and neuromuscular biomechanics, sport mechanics, and biomechanical modeling. Studies of sport performance that explicitly generalize to broader activities, contribute substantially to fundamental understanding of human motion, or are in a sport that enjoys wide participation, are welcome. Also within the scope of JAB are studies using biomechanical strategies to investigate the structure, control, function, and state (health and disease) of animals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信