Cucumber mosaic virus infection does not increase the translocation of the green fluorescent protein from GM rootstock to non-GM scion in transgrafted plants.
{"title":"Cucumber mosaic virus infection does not increase the translocation of the green fluorescent protein from GM rootstock to non-GM scion in transgrafted plants.","authors":"Tomofumi Mochizuki, Takumi Ogawa, Kanae Kato, Harue Asuka, Taira Miyahara, Hiroaki Kodama, Daisaku Ohta","doi":"10.1007/s11262-025-02172-0","DOIUrl":null,"url":null,"abstract":"<p><p>Plant viruses use the plasmodesmata and vascular systems to spread systemically in a plant, which may influence the translocation of exogenous transgene products in genetically modified (GM) plants. Transgrafting is a technique that involves the use of GM plants as grafting partners for non-GM plants, and yields non-GM edible harvests from transgrafted crops; thus, there is potential for its distribution as a non-GM product. However, when growing in agricultural fields, transgrafts are exposed to biotic stresses, such as plant virus infections. In this study, we investigated the influence of a plant virus infection on translocation of transgene products between GM and non-GM parts of transgrafts. We generated homo- and hetero-transgrafts of green fluorescent protein (GFP)-expressing GM tomatoes and GM Nicotiana benthamiana rootstocks with non-GM tomato scions and infected them with cucumber mosaic virus (CMV), a major plant virus, and analyzed the translocation of GFP protein in transgrafts. The results showed that CMV infection did not promote GFP transfer from GM rootstock to non-GM scions.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus Genes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11262-025-02172-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Plant viruses use the plasmodesmata and vascular systems to spread systemically in a plant, which may influence the translocation of exogenous transgene products in genetically modified (GM) plants. Transgrafting is a technique that involves the use of GM plants as grafting partners for non-GM plants, and yields non-GM edible harvests from transgrafted crops; thus, there is potential for its distribution as a non-GM product. However, when growing in agricultural fields, transgrafts are exposed to biotic stresses, such as plant virus infections. In this study, we investigated the influence of a plant virus infection on translocation of transgene products between GM and non-GM parts of transgrafts. We generated homo- and hetero-transgrafts of green fluorescent protein (GFP)-expressing GM tomatoes and GM Nicotiana benthamiana rootstocks with non-GM tomato scions and infected them with cucumber mosaic virus (CMV), a major plant virus, and analyzed the translocation of GFP protein in transgrafts. The results showed that CMV infection did not promote GFP transfer from GM rootstock to non-GM scions.
期刊介绍:
Viruses are convenient models for the elucidation of life processes. The study of viruses is again on the cutting edge of biological sciences: systems biology, genomics, proteomics, metagenomics, using the newest most powerful tools.
Huge amounts of new details on virus interactions with the cell, other pathogens and the hosts – animal (including human), insect, fungal, plant, bacterial, and archaeal - and their role in infection and disease are forthcoming in perplexing details requiring analysis and comments.
Virus Genes is dedicated to the publication of studies on the structure and function of viruses and their genes, the molecular and systems interactions with the host and all applications derived thereof, providing a forum for the analysis of data and discussion of its implications, and the development of new hypotheses.