{"title":"Perturbation of the MetJ regulon impacts the consequences of 2-aminoacrylate stress in <i>Salmonella enterica</i>.","authors":"Bryce R Sawyer, Wangchen Shen, Diana M Downs","doi":"10.1099/mic.0.001572","DOIUrl":null,"url":null,"abstract":"<p><p>In the absence of the broadly conserved deaminase RidA (Reactive intermediate deaminase A), <i>Salmonella enterica</i> and other organisms accumulate the reactive enamine species 2-aminoacrylate (2AA). Free 2AA, generated from serine by the serine/threonine dehydratase IlvA, reacts with and covalently inactivates a subset of pyridoxal 5'-phosphate-dependent enzymes. The metabolic stress caused by 2AA generates growth defects in <i>S. enterica</i>, including (i) when l-alanine is used as a nitrogen source, (ii) when pyruvate is used as a carbon source or (iii) in the presence of exogenous serine. Although the enzymatic targets of 2AA are consistent between growth conditions, the consequences of 2AA-dependent damage differ depending on the distribution of metabolic flux required in different conditions. Analysing the suppressors of a <i>ridA</i> mutant has furthered our understanding of the RidA stress paradigm and, more generally, how a metabolic network responds to perturbation. Many such suppressors modulate the metabolic network to eliminate 2AA production by IlvA. Here, we describe that eliminating the MetJ transcriptional repressor allows a <i>ridA</i> mutant to grow in the presence of 2AA stress in each of the three conditions. The mechanisms by which a Δ<i>metJ</i> suppresses a <i>ridA</i> mutant are nuanced and medium-dependent, emphasizing that consequences of 2AA stress differ based on environmental and metabolic context.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"171 6","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology-Sgm","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mic.0.001572","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the absence of the broadly conserved deaminase RidA (Reactive intermediate deaminase A), Salmonella enterica and other organisms accumulate the reactive enamine species 2-aminoacrylate (2AA). Free 2AA, generated from serine by the serine/threonine dehydratase IlvA, reacts with and covalently inactivates a subset of pyridoxal 5'-phosphate-dependent enzymes. The metabolic stress caused by 2AA generates growth defects in S. enterica, including (i) when l-alanine is used as a nitrogen source, (ii) when pyruvate is used as a carbon source or (iii) in the presence of exogenous serine. Although the enzymatic targets of 2AA are consistent between growth conditions, the consequences of 2AA-dependent damage differ depending on the distribution of metabolic flux required in different conditions. Analysing the suppressors of a ridA mutant has furthered our understanding of the RidA stress paradigm and, more generally, how a metabolic network responds to perturbation. Many such suppressors modulate the metabolic network to eliminate 2AA production by IlvA. Here, we describe that eliminating the MetJ transcriptional repressor allows a ridA mutant to grow in the presence of 2AA stress in each of the three conditions. The mechanisms by which a ΔmetJ suppresses a ridA mutant are nuanced and medium-dependent, emphasizing that consequences of 2AA stress differ based on environmental and metabolic context.
期刊介绍:
We publish high-quality original research on bacteria, fungi, protists, archaea, algae, parasites and other microscopic life forms.
Topics include but are not limited to:
Antimicrobials and antimicrobial resistance
Bacteriology and parasitology
Biochemistry and biophysics
Biofilms and biological systems
Biotechnology and bioremediation
Cell biology and signalling
Chemical biology
Cross-disciplinary work
Ecology and environmental microbiology
Food microbiology
Genetics
Host–microbe interactions
Microbial methods and techniques
Microscopy and imaging
Omics, including genomics, proteomics and metabolomics
Physiology and metabolism
Systems biology and synthetic biology
The microbiome.