Suzan Meijs, Felipe R Andreis, Benedict Kjærgaard, Taha A M Janjua, Winnie Jensen
{"title":"Chronic Cranial Window Technique for Repeated Cortical Recordings During Anesthesia in Pigs.","authors":"Suzan Meijs, Felipe R Andreis, Benedict Kjærgaard, Taha A M Janjua, Winnie Jensen","doi":"10.3791/67931","DOIUrl":null,"url":null,"abstract":"<p><p>Cortical recordings are essential for extracting neuronal signals to inform various applications, including brain-computer interfaces and disease diagnostics. Each application places specific requirements on the recording technique, and invasive solutions are often selected for long-term recordings. However, invasive recording methods are challenged by device failure and adverse tissue responses, which compromise long-term signal quality. To improve the reliability and quality of chronic cortical recordings while minimizing risks related to device failure and tissue reactions, we developed a cranial window technique. In this protocol, we report methods to implant and access a cranial window in juvenile landrace pigs, which facilitates temporary electrocorticography (ECoG) array placement on the dura mater. We further describe how cortical signals can be recorded using the cranial window technique. Cranial window access can be repeated several times, but a minimum of 2 weeks between implant and access surgeries is advised to facilitate recovery and tissue healing. The cranial window approach successfully minimized common electrode failure modes and tissue responses, resulting in stable and reliable cortical recordings over time. We recorded event-related potentials (ERPs) from the primary somatosensory cortex as an example. The method provided highly reliable recordings, which also allowed the assessment of the effect of an intervention (high-frequency stimulation) on the ERPs. The absence of significant device failures and the reduced number of electrodes used (two electrodes, 43 recording sessions, 16 animals) suggest an improved research economy. While minor surgical access is required for electrode placement, the method offers advantages such as reduced infection risk and improved animal welfare. This study presents a scalable, reliable, and reproducible method for chronic cortical recordings, with potential applications in various fields of neuroscience, including pain research and neurological disease diagnosis. Future adaptations may extend its use to other species and recording modalities, such as intracortical recordings and imaging techniques.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 220","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67931","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cortical recordings are essential for extracting neuronal signals to inform various applications, including brain-computer interfaces and disease diagnostics. Each application places specific requirements on the recording technique, and invasive solutions are often selected for long-term recordings. However, invasive recording methods are challenged by device failure and adverse tissue responses, which compromise long-term signal quality. To improve the reliability and quality of chronic cortical recordings while minimizing risks related to device failure and tissue reactions, we developed a cranial window technique. In this protocol, we report methods to implant and access a cranial window in juvenile landrace pigs, which facilitates temporary electrocorticography (ECoG) array placement on the dura mater. We further describe how cortical signals can be recorded using the cranial window technique. Cranial window access can be repeated several times, but a minimum of 2 weeks between implant and access surgeries is advised to facilitate recovery and tissue healing. The cranial window approach successfully minimized common electrode failure modes and tissue responses, resulting in stable and reliable cortical recordings over time. We recorded event-related potentials (ERPs) from the primary somatosensory cortex as an example. The method provided highly reliable recordings, which also allowed the assessment of the effect of an intervention (high-frequency stimulation) on the ERPs. The absence of significant device failures and the reduced number of electrodes used (two electrodes, 43 recording sessions, 16 animals) suggest an improved research economy. While minor surgical access is required for electrode placement, the method offers advantages such as reduced infection risk and improved animal welfare. This study presents a scalable, reliable, and reproducible method for chronic cortical recordings, with potential applications in various fields of neuroscience, including pain research and neurological disease diagnosis. Future adaptations may extend its use to other species and recording modalities, such as intracortical recordings and imaging techniques.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.