[Soil conditioners affect rhizospheric bacterial communities of Cabernet Sauvignon].

Q4 Biochemistry, Genetics and Molecular Biology
Shuaicheng An, Jiangtao Bi, Gong Li, Ruifan Mao, Peng Liu, Zhibing Hui, Xiaoqin Su
{"title":"[Soil conditioners affect rhizospheric bacterial communities of Cabernet Sauvignon].","authors":"Shuaicheng An, Jiangtao Bi, Gong Li, Ruifan Mao, Peng Liu, Zhibing Hui, Xiaoqin Su","doi":"10.13345/j.cjb.240464","DOIUrl":null,"url":null,"abstract":"<p><p>Three soil conditioners were prepared from granulated food waste and decomposed cattle manure combined with desulfurization gypsum, coal gangue, and maifanite, respectively. Field trials were conducted in the saline field growing Cabernet Sauvignon. The effects of soil conditioners on rhizospheric bacterial communities were studied, with the aim of providing a scientific basis for soil amelioration and restoration. Five treatments were designed, including the control (T1), conventional fertilization (T2), reduced chemical fertilization+organic matter-based soil conditioner with calcium additives (T3), reduced chemical fertilization+organic matter-based soil conditioner with silica additives (T4), and reduced chemical fertilization+organic matter-based soil conditioner with magnesium additives (T5), each with three replications. The results indicated that soil conditioners improved the rhizospheric nutrients, yield, and quality of grape (<i>P</i><0.05), increased relative abundance of Proteobacteria by 17.32%-23.37%, decreased relative abundance of unidentified_Bacteria and Acidobacteriota by 4.22%-28.42% and 20.88%-35.81%, respectively. The bacterial community composition and diversity were different between treatments. Function analysis showed that the expression levels of the genes involved in chromosome and protein synthesis, mRNA biosynthesis, and glyoxylate and dicarboxylate metabolism were up-regulated in the treatments with soil conditioners. The correlation analysis revealed that multiple environmental factors affected the alpha diversity of rhizospheric bacterial communities, and some bacterial taxa were closely related to the grape yield and quality. It is concluded that soil conditioners can effectively alter rhizosphere nutrient levels and bacterial community structures and functions. T5 treatment outperforms other treatments in improving the physico-chemical and biological characteristics of rhizosphere, and the yield, and quality of grape. It has potential for application, and provides an important basis for development of new-type soil conditioners.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"41 6","pages":"2432-2450"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13345/j.cjb.240464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Three soil conditioners were prepared from granulated food waste and decomposed cattle manure combined with desulfurization gypsum, coal gangue, and maifanite, respectively. Field trials were conducted in the saline field growing Cabernet Sauvignon. The effects of soil conditioners on rhizospheric bacterial communities were studied, with the aim of providing a scientific basis for soil amelioration and restoration. Five treatments were designed, including the control (T1), conventional fertilization (T2), reduced chemical fertilization+organic matter-based soil conditioner with calcium additives (T3), reduced chemical fertilization+organic matter-based soil conditioner with silica additives (T4), and reduced chemical fertilization+organic matter-based soil conditioner with magnesium additives (T5), each with three replications. The results indicated that soil conditioners improved the rhizospheric nutrients, yield, and quality of grape (P<0.05), increased relative abundance of Proteobacteria by 17.32%-23.37%, decreased relative abundance of unidentified_Bacteria and Acidobacteriota by 4.22%-28.42% and 20.88%-35.81%, respectively. The bacterial community composition and diversity were different between treatments. Function analysis showed that the expression levels of the genes involved in chromosome and protein synthesis, mRNA biosynthesis, and glyoxylate and dicarboxylate metabolism were up-regulated in the treatments with soil conditioners. The correlation analysis revealed that multiple environmental factors affected the alpha diversity of rhizospheric bacterial communities, and some bacterial taxa were closely related to the grape yield and quality. It is concluded that soil conditioners can effectively alter rhizosphere nutrient levels and bacterial community structures and functions. T5 treatment outperforms other treatments in improving the physico-chemical and biological characteristics of rhizosphere, and the yield, and quality of grape. It has potential for application, and provides an important basis for development of new-type soil conditioners.

[土壤调节剂对赤霞珠根际细菌群落的影响]。
以食物残渣和分解牛粪为原料,分别与脱硫石膏、煤矸石和麦饭石配制3种土壤调整剂。在盐田进行了赤霞珠的田间试验。研究了土壤调理剂对土壤根际细菌群落的影响,为土壤改良和修复提供科学依据。设计5个处理,分别为对照(T1)、常规施肥(T2)、减量施肥+有机肥调理剂加钙(T3)、减量施肥+有机肥调理剂加二氧化硅(T4)、减量施肥+有机肥调理剂加镁(T5),每组3个重复。结果表明,土壤调理剂改善了葡萄根际养分,提高了产量和品质
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sheng wu gong cheng xue bao = Chinese journal of biotechnology
Sheng wu gong cheng xue bao = Chinese journal of biotechnology Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
1.50
自引率
0.00%
发文量
298
期刊介绍: Chinese Journal of Biotechnology (Chinese edition) , sponsored by the Institute of Microbiology, Chinese Academy of Sciences and the Chinese Society for Microbiology, is a peer-reviewed international journal. The journal is cited by many scientific databases , such as Chemical Abstract (CA), Biology Abstract (BA), MEDLINE, Russian Digest , Chinese Scientific Citation Index (CSCI), Chinese Journal Citation Report (CJCR), and Chinese Academic Journal (CD version). The Journal publishes new discoveries, techniques and developments in genetic engineering, cell engineering, enzyme engineering, biochemical engineering, tissue engineering, bioinformatics, biochips and other fields of biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信