{"title":"[Association between gut microbiota and hyperuricemia: insights into innovative therapeutic strategies].","authors":"Shujuan Zhang, Xiaoqiu Liu, Yuxin Zhong, Yu Fu","doi":"10.13345/j.cjb.250060","DOIUrl":null,"url":null,"abstract":"<p><p>Uric acid (UA) is the final metabolite of purines in the human body. An imbalance in UA production and excretion that disrupts homeostasis leads to elevated blood UA levels and the development of hyperuricemia (HUA). Approximately one-third of UA is excreted through the intestinal tract. As a crucial component of the intestinal microenvironment, the gut microbiota plays a pivotal role in regulating blood UA levels. Alterations or imbalances in gut microbiota composition are linked to the onset of HUA, which implies the potential of gut microbiota as a novel target for the prevention and treatment of HUA. This review introduces the occurrence mechanism and damage of hyperuricemia, examines the association between HUA and the gut microbiota and their metabolites, and explores the molecular mechanisms underlying gut microbiota-targeted therapies for HUA. Furthermore, it discusses the potential applications of probiotics, prebiotics, and traditional Chinese medicine (including both single herbs and compound formulas) with UA-lowering effects, along with cutting-edge technologies such as fecal microbiota transplantation and machine learning in HUA treatment. This review provides valuable perspectives and strategies for improving the prevention and treatment of HUA.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"41 6","pages":"2290-2309"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13345/j.cjb.250060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Uric acid (UA) is the final metabolite of purines in the human body. An imbalance in UA production and excretion that disrupts homeostasis leads to elevated blood UA levels and the development of hyperuricemia (HUA). Approximately one-third of UA is excreted through the intestinal tract. As a crucial component of the intestinal microenvironment, the gut microbiota plays a pivotal role in regulating blood UA levels. Alterations or imbalances in gut microbiota composition are linked to the onset of HUA, which implies the potential of gut microbiota as a novel target for the prevention and treatment of HUA. This review introduces the occurrence mechanism and damage of hyperuricemia, examines the association between HUA and the gut microbiota and their metabolites, and explores the molecular mechanisms underlying gut microbiota-targeted therapies for HUA. Furthermore, it discusses the potential applications of probiotics, prebiotics, and traditional Chinese medicine (including both single herbs and compound formulas) with UA-lowering effects, along with cutting-edge technologies such as fecal microbiota transplantation and machine learning in HUA treatment. This review provides valuable perspectives and strategies for improving the prevention and treatment of HUA.
期刊介绍:
Chinese Journal of Biotechnology (Chinese edition) , sponsored by the Institute of Microbiology, Chinese Academy of Sciences and the Chinese Society for Microbiology, is a peer-reviewed international journal. The journal is cited by many scientific databases , such as Chemical Abstract (CA), Biology Abstract (BA), MEDLINE, Russian Digest , Chinese Scientific Citation Index (CSCI), Chinese Journal Citation Report (CJCR), and Chinese Academic Journal (CD version). The Journal publishes new discoveries, techniques and developments in genetic engineering, cell engineering, enzyme engineering, biochemical engineering, tissue engineering, bioinformatics, biochips and other fields of biotechnology.