AI4Protein: transforming the future of protein design.

IF 9.5 2区 生物学 Q1 BIOLOGY
Dequan Wang, Zheling Tan, Jin Gao, Shaoting Zhang, Jiaqi Shen, Yuming Lu
{"title":"AI4Protein: transforming the future of protein design.","authors":"Dequan Wang, Zheling Tan, Jin Gao, Shaoting Zhang, Jiaqi Shen, Yuming Lu","doi":"10.1007/s11427-024-2906-3","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) has revolutionized the protein engineering process from multiple aspects, including representing protein information, generating protein designs, and evaluating protein properties. This review aims to introduce the recent progress of AI in protein research. We first introduce how AI models represent protein sequences, structures, and other properties. Further, the applications of generative models in protein design are introduced. The use of predictive models and smart agents in the evaluation process is then discussed, including high-precision protein property simulation and wet lab experimental design. Additionally, we discuss the future development of AI in protein research and the potential challenges it may encounter.</p>","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11427-024-2906-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) has revolutionized the protein engineering process from multiple aspects, including representing protein information, generating protein designs, and evaluating protein properties. This review aims to introduce the recent progress of AI in protein research. We first introduce how AI models represent protein sequences, structures, and other properties. Further, the applications of generative models in protein design are introduced. The use of predictive models and smart agents in the evaluation process is then discussed, including high-precision protein property simulation and wet lab experimental design. Additionally, we discuss the future development of AI in protein research and the potential challenges it may encounter.

AI4Protein:改变蛋白质设计的未来。
人工智能(AI)从多个方面彻底改变了蛋白质工程过程,包括表达蛋白质信息、生成蛋白质设计和评估蛋白质特性。本文综述了人工智能在蛋白质研究中的最新进展。我们首先介绍人工智能模型如何表示蛋白质序列、结构和其他属性。进一步介绍了生成模型在蛋白质设计中的应用。然后讨论了在评估过程中使用预测模型和智能代理,包括高精度蛋白质特性模拟和湿实验室实验设计。此外,我们还讨论了人工智能在蛋白质研究中的未来发展及其可能遇到的潜在挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.10
自引率
8.80%
发文量
2907
审稿时长
3.2 months
期刊介绍: Science China Life Sciences is a scholarly journal co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and it is published by Science China Press. The journal is dedicated to publishing high-quality, original research findings in both basic and applied life science research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信