Osama Abdalla, Mahmood Chahari, Milad Azami, Amir Ameli, Emre Salman, Milutin Stanacevic, Ryan Willing, Shahrzad Towfighian
{"title":"3D printed CNT/TPU triboelectric nanogenerator for load monitoring of total knee replacement.","authors":"Osama Abdalla, Mahmood Chahari, Milad Azami, Amir Ameli, Emre Salman, Milutin Stanacevic, Ryan Willing, Shahrzad Towfighian","doi":"10.1088/1361-665X/ade1ba","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents the development and characterization of a novel triboelectric nanogenerator (TENG) designed as a self-powered sensor for load monitoring in total knee replacement (TKR) implants. The triboelectric layers comprise a 3D-printed thermoplastic polyurethane (TPU) matrix with carbon nanotube (CNT) nanoparticles and kapton tape, sandwiched between two copper electrodes. To optimize sensor performance, the proposed CNT/TPU TENG sensor is fabricated with varying CNT concentrations and thicknesses, enabling a comprehensive analysis of how material composition and structural parameters influence energy harvesting efficiency. The 1% CNT/TPU composite demonstrates the highest power output among the tested samples. The solid CNT/TPU-based TENG generated the apparent output power of 4.1 <i>µ</i>W under a cyclic compressive load of 2100 N, measured across a 1.6 GΩ load resistance and over a nominal contact area of 15.9 cm<sup>2</sup>, while the foam CNT/TPU film achieved a higher apparent output power of 6.9 <i>µ</i>W measured across a 0.9 GΩ load resistance with the same nominal area. The generated power is sufficient to operate a power management and ADC circuit based on our earlier work. The sensors exhibit a stable open-circuit voltage of 320 V for the foam layer and 275 V for the solid one. Sensitivities are 80.50 mV N<sup>-1</sup> ( <math><mrow><mtext>⩽</mtext> <mstyle></mstyle> <mn>1600</mn></mrow> </math> N) and 24.60 mV N<sup>-1</sup> (> 1600 N) for foam CNT/TPU film, demonstrating the integrated sensor capability for wide-range force sensing on TKR implants. The foam CNT/TPU-based TENG maintained stable performance over 16 000 load cycles, confirming its potential for long-term use inside the TKR. Additionally, the dielectric constant of the CNT/TPU composite was found to increase with increasing CNT concentration. The proposed CNT/TPU TENG sensor offers a broad working range and robust energy-harvesting efficiency, making it appropriate for self-powered load sensing in biomedical applications.</p>","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":"34 6","pages":"065030"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12177930/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665X/ade1ba","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents the development and characterization of a novel triboelectric nanogenerator (TENG) designed as a self-powered sensor for load monitoring in total knee replacement (TKR) implants. The triboelectric layers comprise a 3D-printed thermoplastic polyurethane (TPU) matrix with carbon nanotube (CNT) nanoparticles and kapton tape, sandwiched between two copper electrodes. To optimize sensor performance, the proposed CNT/TPU TENG sensor is fabricated with varying CNT concentrations and thicknesses, enabling a comprehensive analysis of how material composition and structural parameters influence energy harvesting efficiency. The 1% CNT/TPU composite demonstrates the highest power output among the tested samples. The solid CNT/TPU-based TENG generated the apparent output power of 4.1 µW under a cyclic compressive load of 2100 N, measured across a 1.6 GΩ load resistance and over a nominal contact area of 15.9 cm2, while the foam CNT/TPU film achieved a higher apparent output power of 6.9 µW measured across a 0.9 GΩ load resistance with the same nominal area. The generated power is sufficient to operate a power management and ADC circuit based on our earlier work. The sensors exhibit a stable open-circuit voltage of 320 V for the foam layer and 275 V for the solid one. Sensitivities are 80.50 mV N-1 ( N) and 24.60 mV N-1 (> 1600 N) for foam CNT/TPU film, demonstrating the integrated sensor capability for wide-range force sensing on TKR implants. The foam CNT/TPU-based TENG maintained stable performance over 16 000 load cycles, confirming its potential for long-term use inside the TKR. Additionally, the dielectric constant of the CNT/TPU composite was found to increase with increasing CNT concentration. The proposed CNT/TPU TENG sensor offers a broad working range and robust energy-harvesting efficiency, making it appropriate for self-powered load sensing in biomedical applications.
期刊介绍:
Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures.
A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.