{"title":"The Landscape of Cancer Metabolism as a Therapeutic Target.","authors":"Kenji Ohshima","doi":"10.1111/pin.70034","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer cells reprogram their metabolism during progression to adapt to the tumor microenvironment, which is characterized by distinct differences in nutrient availability, oxygen concentrations, and acidity. This metabolic reprogramming can simultaneously create metabolic vulnerabilities unique to cancer cells, making cancer metabolism a promising therapeutic target. Since the clinical application of folate antimetabolites in the 1940s, numerous therapeutic strategies targeting cancer metabolism have been developed. In recent years, advancements in technologies such as metabolome analysis have facilitated the development of agents that more specifically target cancer cell metabolism. However, these newly developed agents often face challenges in demonstrating efficacy as monotherapies in clinical trials. Nevertheless, combination therapies, designed based on precise mechanistic insights and incorporating agents such as immune-checkpoint and signaling-pathway inhibitors, have shown promising efficacy. This review provides an overview of the current landscape of therapeutic strategies targeting cancer metabolism, with a particular focus on approaches targeting amino acid, fatty acid, and glucose metabolism in cancer cells.</p>","PeriodicalId":19806,"journal":{"name":"Pathology International","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathology International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/pin.70034","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer cells reprogram their metabolism during progression to adapt to the tumor microenvironment, which is characterized by distinct differences in nutrient availability, oxygen concentrations, and acidity. This metabolic reprogramming can simultaneously create metabolic vulnerabilities unique to cancer cells, making cancer metabolism a promising therapeutic target. Since the clinical application of folate antimetabolites in the 1940s, numerous therapeutic strategies targeting cancer metabolism have been developed. In recent years, advancements in technologies such as metabolome analysis have facilitated the development of agents that more specifically target cancer cell metabolism. However, these newly developed agents often face challenges in demonstrating efficacy as monotherapies in clinical trials. Nevertheless, combination therapies, designed based on precise mechanistic insights and incorporating agents such as immune-checkpoint and signaling-pathway inhibitors, have shown promising efficacy. This review provides an overview of the current landscape of therapeutic strategies targeting cancer metabolism, with a particular focus on approaches targeting amino acid, fatty acid, and glucose metabolism in cancer cells.
期刊介绍:
Pathology International is the official English journal of the Japanese Society of Pathology, publishing articles of excellence in human and experimental pathology. The Journal focuses on the morphological study of the disease process and/or mechanisms. For human pathology, morphological investigation receives priority but manuscripts describing the result of any ancillary methods (cellular, chemical, immunological and molecular biological) that complement the morphology are accepted. Manuscript on experimental pathology that approach pathologenesis or mechanisms of disease processes are expected to report on the data obtained from models using cellular, biochemical, molecular biological, animal, immunological or other methods in conjunction with morphology. Manuscripts that report data on laboratory medicine (clinical pathology) without significant morphological contribution are not accepted.