{"title":"Recent Advances in the Molecular Mechanisms of Ocular Dominance Plasticity in the Visual Cortex.","authors":"Yanglin Qin, Wei Wang, Yu Gu, Xuefeng Shi","doi":"10.1007/s12264-025-01448-7","DOIUrl":null,"url":null,"abstract":"<p><p>The visual cortex is an essential part of the brain for processing visual information. It exhibits structural and functional plasticity, which is crucial for adapting to complex visual environments. The quintessential manifestation of visual cortical plasticity is ocular dominance plasticity during the critical period, which involves numerous cellular and molecular events. While previous studies have emphasized the role of visual cortical neurons and their associated functional molecules in visual plasticity, recent findings have revealed that structural factors such as the extracellular matrix and glia are also involved. Investigating how these molecules interact to form a complex network that facilitates plasticity in the visual cortex is crucial to our understanding of the development of the visual system and the advancement of therapeutic strategies for visual disorders like amblyopia.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-025-01448-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The visual cortex is an essential part of the brain for processing visual information. It exhibits structural and functional plasticity, which is crucial for adapting to complex visual environments. The quintessential manifestation of visual cortical plasticity is ocular dominance plasticity during the critical period, which involves numerous cellular and molecular events. While previous studies have emphasized the role of visual cortical neurons and their associated functional molecules in visual plasticity, recent findings have revealed that structural factors such as the extracellular matrix and glia are also involved. Investigating how these molecules interact to form a complex network that facilitates plasticity in the visual cortex is crucial to our understanding of the development of the visual system and the advancement of therapeutic strategies for visual disorders like amblyopia.
期刊介绍:
Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer.
NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.