Enhanced Therapeutic Effects of Extracellular Vesicles Targeting MiR-137 Contribute to Functional Recovery by Attenuating Neuronal Injury After Ischemic Stroke.
Hui-Xin Zhang, Li-Qing Tao, Yi-Hang Chen, Tian-Yi Jiang, Zhi-Yuan Ye, Wen She, Chang-Ying Chen, Ya-Li Han, Cui Qi, Chong Shen, Jun Gao
{"title":"Enhanced Therapeutic Effects of Extracellular Vesicles Targeting MiR-137 Contribute to Functional Recovery by Attenuating Neuronal Injury After Ischemic Stroke.","authors":"Hui-Xin Zhang, Li-Qing Tao, Yi-Hang Chen, Tian-Yi Jiang, Zhi-Yuan Ye, Wen She, Chang-Ying Chen, Ya-Li Han, Cui Qi, Chong Shen, Jun Gao","doi":"10.1007/s12264-025-01437-w","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemic stroke is a leading cause of death, especially among aging populations. MicroRNA-137 (miR-137) is known to be involved in neurodevelopment. However, its role in ischemic stroke is still unexplored. Here, we assessed the regulation of miR-137 after cerebral ischemia and reperfusion (I/R) and developed a targeted delivery therapy by extracellular vesicles (EVs). Our results showed that miR-137 was enhanced in the hippocampus of mice after I/R. miR-137 regulated the ischemia-induced cell death by decreasing the expression of Sirtuin1 (Sirt1). Therefore, we evaluated a therapeutic approach involving mesenchymal stem cell-derived EVs. Systemic delivery of anti-miR-137 by rabies virus glycoprotein-modified EVs allowed specific targeting of neurons. After anti-miR-137 treatment, the survival rate was increased in ischemic mice, and some neurobehavioral deficits were alleviated. We also established that Maged1 deficiency attenuated ischemic damage and inhibited miR-137 enrichment. Besides, the increase of miR-137 increased neuronal death and neurological deficits after I/R through the MAGED1/miR-137/Sirt1 pathway. Combined with rabies virus glycoprotein-modified EVs and anti-miR-137, this is a new strategy for regulating ischemic neuronal injury and functional recovery by targeting miR-137.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-025-01437-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Ischemic stroke is a leading cause of death, especially among aging populations. MicroRNA-137 (miR-137) is known to be involved in neurodevelopment. However, its role in ischemic stroke is still unexplored. Here, we assessed the regulation of miR-137 after cerebral ischemia and reperfusion (I/R) and developed a targeted delivery therapy by extracellular vesicles (EVs). Our results showed that miR-137 was enhanced in the hippocampus of mice after I/R. miR-137 regulated the ischemia-induced cell death by decreasing the expression of Sirtuin1 (Sirt1). Therefore, we evaluated a therapeutic approach involving mesenchymal stem cell-derived EVs. Systemic delivery of anti-miR-137 by rabies virus glycoprotein-modified EVs allowed specific targeting of neurons. After anti-miR-137 treatment, the survival rate was increased in ischemic mice, and some neurobehavioral deficits were alleviated. We also established that Maged1 deficiency attenuated ischemic damage and inhibited miR-137 enrichment. Besides, the increase of miR-137 increased neuronal death and neurological deficits after I/R through the MAGED1/miR-137/Sirt1 pathway. Combined with rabies virus glycoprotein-modified EVs and anti-miR-137, this is a new strategy for regulating ischemic neuronal injury and functional recovery by targeting miR-137.
期刊介绍:
Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer.
NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.