{"title":"Schwann Cells and Their Exosomes: Research Progress and Prospect in Spinal Cord Injury.","authors":"Xin Wang, Wei Yan, Lin Zhu, Lingzhi Wei, Haobo Cao, Fanni Yang, Yibao Zhang","doi":"10.1155/np/6684089","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal cord injury (SCI) is a severe condition that affects the central nervous system (CNS), for which there is currently no effective treatment. Schwann cells (SCs) transplantation for SCI has been well demonstrated in preclinical studies, showing that it can achieve therapeutic goals by improving autonomic function, reducing neuropathic pain, and enhancing limb function through mechanisms such as alleviating inflammation, modulating immunity, and reducing dense scar formation. However, the transplantation of SCs sometimes encounters adverse events, such as low survival rates, significant rejection reactions, limitations on transplantation methods, and the formation of glial scars, all of which severely hinder its clinical application. Meanwhile, SC-derived exosomes (SC-exos) also hold great potential in treating SCI, with specific roles, including immune modulation, anti-inflammatory effects, angiogenesis, apoptosis inhibition, and promotion of axonal regeneration, even surpassing traditional cell therapy in certain aspects. This paper aims to elucidate the potential mechanisms and valuable therapeutic roles of SCs and SC-exos in the treatment of SCI, as well as to provide insights for subsequent research directions by analyzing their current limitations.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"2025 ","pages":"6684089"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12178780/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Plasticity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/np/6684089","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Spinal cord injury (SCI) is a severe condition that affects the central nervous system (CNS), for which there is currently no effective treatment. Schwann cells (SCs) transplantation for SCI has been well demonstrated in preclinical studies, showing that it can achieve therapeutic goals by improving autonomic function, reducing neuropathic pain, and enhancing limb function through mechanisms such as alleviating inflammation, modulating immunity, and reducing dense scar formation. However, the transplantation of SCs sometimes encounters adverse events, such as low survival rates, significant rejection reactions, limitations on transplantation methods, and the formation of glial scars, all of which severely hinder its clinical application. Meanwhile, SC-derived exosomes (SC-exos) also hold great potential in treating SCI, with specific roles, including immune modulation, anti-inflammatory effects, angiogenesis, apoptosis inhibition, and promotion of axonal regeneration, even surpassing traditional cell therapy in certain aspects. This paper aims to elucidate the potential mechanisms and valuable therapeutic roles of SCs and SC-exos in the treatment of SCI, as well as to provide insights for subsequent research directions by analyzing their current limitations.
期刊介绍:
Neural Plasticity is an international, interdisciplinary journal dedicated to the publication of articles related to all aspects of neural plasticity, with special emphasis on its functional significance as reflected in behavior and in psychopathology. Neural Plasticity publishes research and review articles from the entire range of relevant disciplines, including basic neuroscience, behavioral neuroscience, cognitive neuroscience, biological psychology, and biological psychiatry.